Tìm nghiệm chứ?
`18x^2+6x-8=0`
`<=>18(x^2+1/3x-4/9)=0`
`<=>18(x^2+1/3x+1/36-1/36-4/9)=0`
`<=>18[(x+1/6)^2-17/36]=0`
`<=>18(x+1/6)^2-17/2=0`
`<=>(x+1/6)^2=17/36`
\(\Leftrightarrow x+\frac{1}{6}=\pm\sqrt{\frac{17}{36}}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\sqrt{17}-1}{6}\\x=\frac{-\sqrt{17}-1}{6}\end{matrix}\right.\)
Vậy phương trình có nghiệm \(S=\left\{\frac{\sqrt{17}-1}{6};\frac{-\sqrt{17}-1}{6}\right\}\)