Bài 9: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Khánh Vân

Phân tích đa thức thành nhân tử
1, x3z + x2yz - x2z2 - xyz2
2, x2 - ( a + b )xy + aby2
3, ab( x2 + y2 ) + xy( a2 + b2 )
4, ( xy + ab )2 + ( ay - bx )2
5, a2( b - c ) + b2( c - a ) + c2( a - b )
6, 16x2 - 40xy + 25y2
7, 25x4 - 10x2y + y2
8, -16x4y6 - 24x5y5 - 9x6y4
9, 16x2 - 4y2 - 8x + 1
10, 49x2 - 25 + 42xy + 9y2

Nguyễn Trà My
1 tháng 8 2017 lúc 12:46

\(1.\)

\(x^3z+x^2yz-x^2z^2-xyz^2\)

\(=x^3z-x^2z^2+x^2yz-xyz^2\)

\(=x^2z\left(x-z\right)-xyz\left(x-z\right)\)

\(=\left(x^2z-xyz\right)\left(x-z\right)\)

\(=xz\left(x-y\right)\left(x-z\right)\)

\(2.\)

\(x^2-\left(a+b\right)xy+aby^2\)

\(=x^2-axy-bxy+aby^2\)

\(=x^2-bxy-axy+aby^2\)

\(=x\left(x-by\right)-ay\left(x-by\right)\)

\(=\left(x-ay\right)\left(x-by\right)\)

\(3.\)

\(ab\left(x^2+y^2\right)+xy\left(x^2+y^2\right)\)

\(=abx^2+aby^2+a^2xy+b^2xy\)

\(=abx^2+b^2xy+a^2xy+aby^2\)

\(=bx\left(ax+by\right)+ay\left(ax+by\right)\)

\(=\left(ax+by\right)\left(bx+ay\right)\)

\(4.\)

\(\left(xy+ab\right)^2+\left(ay-bx\right)^2\)

\(=x^2y^2+2abxy+a^2b^2+a^2y^2-2aybx+b^2x^2\)

\(=x^2y^2+a^2b^2+a^2y^2+b^2x^2\)

\(=x^2y^2+b^2x^2+a^2b^2+a^2y^2\)

\(=x^2\left(b^2+y^2\right)+a^2\left(b^2+y^2\right)\)

\(=\left(a^2+x^2\right)\left(b^2+y^2\right)\)

\(5.\)

\(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)

\(=a^2b-a^2c+b^2c-ab^2+ac^2-bc^2\)

\(=a^2b-ab^2-a^2c-b^2c+ac^2-bc^2\)

\(=ab\left(a-b\right)-c\left(a^2-b^2\right)+c^2\left(a-b\right)\)

\(=ab\left(a-b\right)-c\left(a-b\right)\left(a+b\right)+c^2\left(a-b\right)\)

\(=\left(a-b\right)\left(ab-ac-bc+c^2\right)\)

\(=\left(a-b\right)\left(ab-bc-ac+c^2\right)\)

\(=\left(a-b\right)\left[b\left(a-c\right)-c\left(a-c\right)\right]\)

\(=\left(a-c\right)\left(b-c\right)\left(a-c\right)\)

\(=\left(a-b\right)\left(a-c\right)\left(b-c\right)\)

\(6.\)

\(16x^2-40xy+2y^2\)

\(=\left(4x\right)^2-2\cdot4\cdot5xy+\left(5y\right)^2\)

\(=\left(4x-5y\right)^2\)

\(7.\)

\(25x^4-10x^2y+y^2\)

\(=\left(5x^2\right)^2-2\cdot5x^2y+y^2\)

\(=\left(5x^2+y\right)^2\)

\(8.\)

\(-16x^4y^6-24x^5y^5-9x^6y^4\)

\(=-\left(4^2x^4y^6+2\cdot4\cdot3x^5y^5+3^2x^6y^4\right)\)

\(=-\left[\left(4x^2y^3\right)^2+2\left(4x^2y^3\right)\left(3x^3y^2\right)+\left(3x^3y^2\right)^2\right]\)

\(=\left(4x^2y^3+3x^3y^2\right)^2\)

\(9.\)

\(16x^2-4y^2-8x+1\)

\(=\left(4x\right)^2-\left(2y\right)^2-8x+1\)

\(=\left(4x\right)^2-8x+1-\left(2y\right)^2\)

\(=\left(4x+1\right)^2-\left(2y\right)^2\)

\(=\left(4x-2y+1\right)\left(4x+2y+1\right)\)

\(10.\)

\(49x^2-25+42xy+9y^2\)

\(=\left(7x\right)^2-5^2+2\cdot7\cdot3xy+\left(3y\right)^2\)

\(=\left(7x\right)^2+2\cdot7\cdot3xy+\left(3y\right)^2-5^2\)

\(=\left(7x+3y\right)^2-5^2\)

\(=\left(7x+5y+5\right)\left(7x+3y-5\right)\)


Các câu hỏi tương tự
hoangtuvi
Xem chi tiết
Phạm Hải Nam
Xem chi tiết
Huỳnh Xương Hưng
Xem chi tiết
lê minh
Xem chi tiết
Chau Minh
Xem chi tiết
Trung Art
Xem chi tiết
Tai Nguyen Phu
Xem chi tiết
hoàng minh vũ
Xem chi tiết
❄զմỳղհ❖ണօӀӀվ★彡
Xem chi tiết