a3m+2a2m+am = am(a2m+2am+1) = am[(am)2+2am+1] = am(am+1)2
Ta có :
a3m+2a2m+am
= am(a2m+2am+1)
= am[(am)2+2am+1]
= am(am+1)2
\(a^{3m}+2a^{2m}+a^m\)
\(\Leftrightarrow a^m\left(a^{2m}+2a^m+1\right)\)
\(\Leftrightarrow a^m\left[\left(a^m\right)^2+2a^m+1\right]\)
\(\Leftrightarrow a^m\left(a^m+1\right)^2\)
\(\Leftrightarrow a^m\left(a^m+1\right)\left(a^m+1\right)\)