a, x4 + x3 + x + 1
= x3(x + 1) + (x + 1)
= (x + 1)(x3 + 1)
= (x + 1)2(x2 - x + 1)
b, x4 - x3 - x2 + 1
= x3(x - 1) - (x - 1)(x + 1)
= (x - 1)(x3 - x - 1)
c, ( 2x + 1 )2 - ( x - 1 )2
= (2x + 1 + x - 1)(2x + 1 - x + 1)
= 3x(x + 2)
d, x4 + 4x2 - 5
= x4 - x2 + 5x2 - 5
= x2(x2 - 1) + 5(x2 - 1)
= (x2 - 1)(x2 + 5)
= (x - 1)(x + 1)(x2 + 5)
a/ \(x^4+x^3+x+1=x^3\left(x+1\right)+\left(x+1\right)=\left(x+1\right)\left(x^3+1\right)=\left(x+1\right)^2\left(x^2-x+1\right)\)
b/ \(x^4-x^3-x^2+1=\left(x^4-x^3\right)-\left(x^2-1\right)=x^3\left(x-1\right)-\left(x-1\right)\left(x+1\right)=\left(x-1\right)\left(x^3-x-1\right)\)
c/ \(\left(2x+1\right)^2-\left(x-1\right)^2=\left(2x+1-x+1\right)\left(2x+1+x-1\right)=3x\left(x+2\right)\)
d/ \(x^4+4x^2-5=x^4-x^2+5x^2-5=x^2\left(x^2-1\right)+5\left(x^2-1\right)=\left(x^2-1\right)\left(x^2+5\right)=\left(x-1\right)\left(x+1\right)\left(x^2+5\right)\)