c)
Đặt $x^2+3x+1=a$. Khi đó:
\((x^2+3x+1)(x^2+3x+2)-6=a(a+1)-6\)
\(=a^2+3a-2a-6=a(a+3)-2(a+3)=(a-2)(a+3)\)
\(=(x^2+3x-1)(x^2+3x+4)\)
d)
\(4(x+5)(x+6)(x+10)(x+12)-3x^2\)
\(=4[(x+5)(x+12)][(x+6)(x+10)]-3x^2\)
\(=4(x^2+17x+60)(x^2+16x+60)-3x^2\)
\(=4(a+x)a-3x^2\) (đặt \(x^2+16x+60=a\))
\(=4a^2+4ax-3x^2=4a^2-2ax+6ax-3x^2\)
\(=2a(2a-x)+3x(2a-x)=(2a-x)(2a+3x)\)
\(=(2x^2+32x+120-x)(2x^2+32x+120+3x)\)
\(=(2x^2+31x+120)(2x^2+35x+120)\)
\(=[2x(x+8)+15(x+8)](2x^2+35x+120)\)
\(=(2x+15)(x+8)(2x^2+35x+120)\)
a)
\((x+2)(x+3)(x+4)(x+5)-24\)
\(=[[(x+2)(x+5)]][(x+3)(x+4)]-24\)
\(=(x^2+7x+10)(x^2+7x+12)-24\)
\(=a(a+2)-24\) (đặt $x^2+7x+10=a$)
\(=a^2+2a-24=a^2+6a-4a-24\)
\(=a(a+6)-4(a+6)=(a-4)(a+6)\)
\(=(x^2+7x+6)(x^2+7x+16)\)
\(=(x+1)(x+6)(x^2+7x+16)\)
b)
\((4x+1)(12x-1)(3x+2)(x+1)-4\)
\(=[(4x+1)(3x+2)][(12x-1)(x+1)]-4\)
\(=(12x^2+11x+2)(12x^2+11x-1)-4\)
\(=(a+2)(a-1)-4\) (đặt $12x^2+11x=a$)
\(=a^2+a-6=a^2+3a-2a-6=a(a+3)-2(a+3)\)
\(=(a-2)(a+3)=(12x^2+11x-2)(12x^2+11x+3)\)
c)
Đặt $x^2+3x+1=a$. Khi đó:
\((x^2+3x+1)(x^2+3x+2)-6=a(a+1)-6\)
\(=a^2+3a-2a-6=a(a+3)-2(a+3)=(a-2)(a+3)\)
\(=(x^2+3x-1)(x^2+3x+4)\)
d)
\(4(x+5)(x+6)(x+10)(x+12)-3x^2\)
\(=4[(x+5)(x+12)][(x+6)(x+10)]-3x^2\)
\(=4(x^2+17x+60)(x^2+16x+60)-3x^2\)
\(=4(a+x)a-3x^2\) (đặt \(x^2+16x+60=a\))
\(=4a^2+4ax-3x^2=4a^2-2ax+6ax-3x^2\)
\(=2a(2a-x)+3x(2a-x)=(2a-x)(2a+3x)\)
\(=(2x^2+32x+120-x)(2x^2+32x+120+3x)\)
\(=(2x^2+31x+120)(2x^2+35x+120)\)
\(=[2x(x+8)+15(x+8)](2x^2+35x+120)\)
\(=(2x+15)(x+8)(2x^2+35x+120)\)