Bài 9: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vũ Nguyễn Linh Chi

Phân tích các đa thức sau thành nhân tử

1. x3y3 + x2y2+4

2. x4+x3+6x2+5x +5

3. x4-2x3 -12x2 + 12x +36

4. x8y8 + x4y4 + 1

Lightning Farron
29 tháng 7 2017 lúc 10:43

a)\(x^3y^3+x^2y^2+4\)

\(=x^3y^3-x^2y^2+2xy+2x^2y^2-2xy+4\)

\(=xy\left(x^2y^2-xy+2\right)+2\left(x^2y^2-xy+2\right)\)

\(=\left(xy+2\right)\left(x^2y^2-xy+2\right)\)

b)\(x^4+x^3+6x^2+5x+5\)

\(=x^4+x^2+x^2+5x^2+5x+5\)

\(=x^2\left(x^2+x+1\right)+5\left(x^2+x+1\right)\)

\(=\left(x^2+5\right)\left(x^2+x+1\right)\)

c)\(x^4-2x^3-12x^2+12x+36\)

\(=x^4-2x^3-6x^2-6x^2+12x+36\)

\(=x^2\left(x^2-2x-6\right)-6\left(x^2-2x-6\right)\)

\(=\left(x^2-6\right)\left(x^2-2x-6\right)\)

d)\(x^8y^8+x^4y^4+1\)

\(=x^8y^8+2x^4y^4+1-x^4y^4\)

\(=\left(x^4y^4+1\right)^2-\left(x^2y^2\right)^2\)

\(=\left(x^4y^4+1+x^2y^2\right)\left(x^4y^4+1-x^2y^2\right)\)

\(=\left(x^4y^4+2x^2y^2+1-x^2y^2\right)\left(x^4y^4+1-x^2y^2\right)\)

\(=\left(\left(x^2y^2+1\right)^2-\left(xy\right)^2\right)\left(x^4y^4+1-x^2y^2\right)\)

\(=\left(x^2y^2+1-xy\right)\left(x^2y^2+1+xy\right)\left(x^4y^4+1-x^2y^2\right)\)


Các câu hỏi tương tự
TrịnhAnhKiệt
Xem chi tiết
Tiên Võ
Xem chi tiết
Vinh Thuy Duong
Xem chi tiết
T.Huy
Xem chi tiết
Ha My
Xem chi tiết
lê minh
Xem chi tiết
KIRI NITODO
Xem chi tiết
ngọc hân
Xem chi tiết
Phương Thảo
Xem chi tiết
Trần Hương Trà
Xem chi tiết