=a(b3-3b2c+3c2b-c3)+b(c3-3c2a+3a2c-a3)+c(a3-3a2b+3b2a-b3)
=ab3-3ab2c+3abc2-ac3+bc3-3abc2+3a2bc-a3b+a3c-3a2bc+3ab2c-b3c
=ab3-ac3+bc3-ab3+a3c-b3c
=a(b3-3b2c+3c2b-c3)+b(c3-3c2a+3a2c-a3)+c(a3-3a2b+3b2a-b3)
=ab3-3ab2c+3abc2-ac3+bc3-3abc2+3a2bc-a3b+a3c-3a2bc+3ab2c-b3c
=ab3-ac3+bc3-ab3+a3c-b3c
Rút gọn
\(\frac{a^3}{\left(a-b\right)\left(a-c\right)}+\frac{b^3}{\left(b-c\right)\left(b-a\right)}+\frac{c^3}{\left(c-a\right)\left(c-b\right)}\)
Chứng minh:
\(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(a+c\right)\)
cho các số nguyên a,b,c thoả mãn \(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3\)= 378
tính A= |a-b|=+|b-c|+|c-a|
chứng minh rằng
a) \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)
b)\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\cdot\left(a^2+b^2+c^2+ab+bc-ca\right)\)
áp dụng suy ra kết quả
a) \(a^3+b^3+c^3=3abc\) thì \(\left\{{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)
b) cho \(a^3+b^3+c^3=3abc\left(a+c\ne0\right)\)
tính B= \(\left(1+\dfrac{a}{b}\right)\cdot\left(1+\dfrac{b}{c}\right)\cdot\left(1+\dfrac{c}{a}\right)\)
Câu 1: Phân tích thành nhân tử:
\(\text{a) }a\left(a+2b\right)^3-b\left(2a+b\right)^3\)
\(\text{b) }\left(a+b\right)\left(a^2-b^2\right)+\left(b+c\right)\left(b^2-c^2\right)\left(c+a\right)\left(c^2-a^2\right)\)
Câu 2: Cho \(a^3+b^3+c^3-3abc=0\)
Chứng minh: \(a=b=c\)
cho a+b+c=0 tính \(\left(a-b\right)c^3+\left(b-c\right)a^3+\left(c-a\right)b^3\)
Cho 3 số a,b,c thỏa mãn:
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=6abc\)
Chứng minh: \(a^3+b^3+c^3=3abc\left(a+b+c+1\right)\)
\(Cho 3 số đôi một khác nhau. Chứng minh rằng : \(\dfrac{b-c}{\left(a-b\right)\left(a-c\right)}+\dfrac{c-a}{\left(b-c\right)\left(b-a\right)}+\dfrac{a-b}{\left(c-a\right)\left(c-b\right)}\) =\(2\left(\dfrac{1}{a-b}+\dfrac{1}{b-c}+\dfrac{1}{c-a}\right)\)\)
Cho \(a,b,c>0\) thỏa mãn: \(a^3+b^3+c^3=\left(a+b-c\right)^3+\left(a-b+c\right)^3+\left(b+c-a\right)^3\). Chứng minh rằng: \(a=b=c\)