\(=\frac{a^3\left(b-c\right)-b^3\left(a-c\right)+c^3\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=\frac{a^3b-ab^3-a^3c+b^3c+c^3\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(=\frac{ab\left(a^2-b^2\right)-c\left(a^3-b^3\right)+c^3\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=\frac{ab\left(a+b\right)-c\left(a^2+b^2+ab\right)+c^3}{\left(a-c\right)\left(b-c\right)}\)
\(=\frac{a^2b+ab^2-a^2c-b^2c-abc+c^3}{\left(a-c\right)\left(b-c\right)}=\frac{a^2\left(b-c\right)+ab\left(b-c\right)-c\left(b^2-c^2\right)}{\left(a-c\right)\left(b-c\right)}\)
\(=\frac{a^2+ab-c\left(b+c\right)}{a-c}=\frac{a^2+ab-bc-c^2}{a-c}=\frac{b\left(a-c\right)+\left(a^2-c^2\right)}{a-c}=a+b+c\)