Cho x>0 và a,b là các hằng số dương cho trước. Tìm GTNN của biểu thức
P= \(\left(\sqrt{x}+\frac{a}{\sqrt{x}}\right)\left(\sqrt{x}+\frac{b}{\sqrt{x}}\right)\)
\(\frac{\left(a-x\right)\left(a-y\right)}{a\left(a-b\right)\left(a-c\right)}+\frac{\left(b-x\right)\left(b-y\right)}{b\left(b-c\right)\left(b-a\right)}+\frac{\left(c-x\right)\left(c-y\right)}{c\left(c-a\right)\left(c-b\right)}\)
Tìm min của biểu thức biết a,b,c là các số thực dương khác nhau đôi một
trong đó x,y là 2 số dương thay đổi luôn có tổng là 1:
P/S bài này là em đố các bạn mong cô Linh Chi ko trả lời :D
Cho x;y là hai số dương .Tìm GTNN của biểu thức \(\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{xy}\)
Cho x,y,z là các số thực dương thỏa mãn x+y+z=1. Tìm GTNN của biểu thức
\(F=\text{∑}\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}\)
Cho số thực dương x,y,z thỏa mãn : x+y+z = 1. Tìm GTNN của biểu thức:\(A=\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4}{\left(z^2+x^2\right)\left(z+x\right)}\)
1) Tìm các số x , y biết: 2x2 - 2xy + 5y2 - 2x - 2y + 1 =0
2) Cho các số thực dương a, b thỏa mãn a + b = 1. Tìm GTNN của biểu thức \(B=\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2\)
Cho x,y là hai số dương. Tìm GTNN của biểu thức:
M = \(\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{xy}\)
1)Giải phương trình: \(\left(3x+1\right)\sqrt{2x^2-1}=5x^2+\frac{3}{2}x-3.\)
2)Cho các số thực x, y thỏa mãn \(x^2+y^2=1\)Tìm GTNN và GTLN của biểu thức :
\(T=\sqrt{4+5x}+\sqrt{4+5y}.\)
3)Cho các số thực dương a,b,c . Chứng minh rằng
\(\frac{b\left(2a-b\right)}{a\left(b+c\right)}+\frac{c\left(2b-c\right)}{b\left(c+a\right)}+\frac{a\left(2c-a\right)}{c\left(a+b\right)}\le\frac{3}{2}.\)
Đề của trường ^^. mn giúp tui ,nhất là câu 2 tìm min ...
Cho a,b là các số thực dương thỏa mãn a+b=1
Tìm GTNN của biểu thức \(A=\left(a+\frac{1}{b}\right)\left(b+\frac{1}{a}\right)\)