Phương trình đường phân giác của góc phần tư thứ nhất là: y = x.
Với x = 1 thì y = 1.
Do đó, parabol cắt đường phân giác của góc phần tư thứ nhất tại A(1; 1).
Thay tọa độ A(1; 1) vào phương trình parabol ta được:
1 = 1 2 + 1 + c nên c = -1
Đáp án D
Phương trình đường phân giác của góc phần tư thứ nhất là: y = x.
Với x = 1 thì y = 1.
Do đó, parabol cắt đường phân giác của góc phần tư thứ nhất tại A(1; 1).
Thay tọa độ A(1; 1) vào phương trình parabol ta được:
1 = 1 2 + 1 + c nên c = -1
Đáp án D
Tìm Parabol y = ax2 - 4x + c, biết rằng Parabol :
Đi qua hai điểm A(1; -2) và B(2; 3).
Có đỉnh I(-2; -2).
Có hoành độ đỉnh là -3 và đi qua điểm P(-2; 1).
Có trục đối xứng là đường thẳng x = 2 và cắt trục hoành tại điểm (3; 0).
Cho hàm số y=x²-mx-3(1) a/Tìm m để đồ thị hàm số (1) cắt Õ tại điểm có hoành độ bằng 3 b/lập bảng biến thiên và vẽ đồ thị khi m=-2 c/Tìm tọa độ giao điểm (P) với đường thẳng (d)y=2x+9 d/tìm m để parabol của hàm số có đỉnh nằm trên trục Ox
Xác định Parabol (P) : y = ax^2 + bx + c ( a khác 0 ) biết (P) đi qua :
a, điểm E (0; 6) và hàm số y = ax^2 - bx + c đạt giá trị nhỏ nhất là 4 khi x = -2
b, điểm F (1; 16) và cắt Ox tại các điểm có hoành độ là -1 và 5.
Cho tam giác abc nội tiếp đường trong (I) (x-2)^2 +(y-3)^3 =25 có điểm A(-1;-1) đường phân giác trong của góc a là x-y=0 biết điểm M(1/2;5) thuộc đường thẳng BC.Tìm tọa độ các điểm B,C biết B có hoành độ dương
Tìm m sao cho đường thẳng (d): y = -2x cắt Parabol (P): y = x2 -2mx+m2-1 tại hai điểm phân biệt có hoành độ lần lượt là x1, x2 sao cho biểu thức P bằng x1 bình phương cộng x2 bình phương đạt giá trị nhỏ nhất. A. m= 2 B. m=1 C. m=-2 D. m= -1
Cho hàm số y = ax2 −x + c có đồ thị là parabol (P). Biết (P) có trục đối xứng là đường thẳng x = 1/2 và cắt trục tung tại điểm có tung độ bằng 3. Khi đó giá trị của a, c là
MÌNH CẦN GẤP Ạ !!!!
Trong mặt phẳng Oxy. Các khẳng định sau đúng hay sai?
a) Tọa độ của điểm A bằng tọa độ của vectơ OA;
b) Điểm A nằm trên trục hoành thì có tung độ bằng 0;
c) Điểm A nằm trên trục tung thì có hoành độ bằng 0;
d) Hoành độ và tung độ của điểm A bằng nhau khi và chỉ khi A nằm trên tia phân giác của góc phần tư thứ nhất.
Đường thẳng y= 2m(x-1) cắt parabol y= x2-2x+1 tại 2 điểm pb cùng với gốc tọa độ tạo thành tam giác có diện tích bằng 2 khi.
Tìm Parabol (P): y=ax2+bx+c cắt trục hoành Ox tại 2 điểm có hoành độ lần lượt là -1 và 2, cắt trục tung Oy tại điểm có tung độ bằng -2.