\(\text{Với x,y,z là các số thực dương thay đổi và thỏa mãn 1/x+1/y+1/z=3. Tìm giá trị lớn nhất của biểu thức}:P=\frac{1}{\sqrt{2x^2+y^2+3}}+\frac{1}{\sqrt{2y^2+z^2+3}}+\frac{1}{\sqrt{2z^2+x^2+3}}\)
cho x,y,z là các số dương thỏa \(x^2+y^2+z^2=3\)
chứng minh:\(\frac{x^2}{y+2\text{z}}+\frac{y^2}{z+2x}+\frac{z^2}{x+2y}+\frac{1}{1+\sqrt{3+2\left(xy+yz+x\text{z}\right)}}\ge\frac{5}{4}\)
\(\text{Cho x,y là các số thực dương và }x+y\le1\)
a)\(\text{Chứng minh rằng }\frac{x^3+y^3}{2}\ge\left(\frac{x+y}{2}\right)^3\)
b) \(\text{Tìm giá trị nhỏ nhất của biểu thức }P=\left(1+x+\frac{1}{x}\right)^3+\left(1+y+\frac{1}{y}\right)^3\)
\(\text{Cho các số thực dương x, y, z thỏa mãn: x2+y2+z2=1 CMR: (x−1)+(y−2)2+(z−3)4≥88 }\)
HELP ME!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
thanks người giúp
1. Chứng minh với mọi số thực a, b, c ta có 2a2+b2+c2\(\ge\)2a(b+c)
2. Cho các số thực dương x, y, z thỏa mãn x+y+z=3. Chứng minh rằng: \(\frac{\text{2x^2}+y^2+z^2}{4-yz}+\frac{\text{2y^2}+z^2+x^2}{4-zx}+\frac{\text{2z^2}+x^2+y^2}{4-xy}\)\(\ge\)4xyz
Cho x,y,z là các số thực dương thỏa mãn x+y+z=1. Tìm GTNN của biểu thức
\(F=\text{∑}\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}\)
Cho x, y là hai số thực dương. Chứng minh rằng:
\(\frac{1-xy}{2+x^2+y^2}+\frac{x^2-y}{1+2x^2+y^2}+\frac{y^2-x}{1+x^2+2y^2}\ge0\)
cho x,y là các số dương thỏa man: x+y=1
Tìm GTNN của B=\(\left(\text{x}+\dfrac{1}{\text{x}}\right)^{2^{ }}+\left(y+\dfrac{1}{y}\right)^2\)
cho x,y là 2 số thực dương thỏa mãn \(|x-2y|\le\frac{1}{\sqrt{x}}\) và \(|y-2x|\le\frac{1}{\sqrt{y}}\). tìm gtln của P=x2+2y