Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Roy

P=  -3x^2 + 6x -  y^2+ 3y + 10 tìm GTLN của P

Nobi Nobita
25 tháng 10 2020 lúc 21:46

\(P=-3x^2+6x-y^2+3y+10\)

\(=-3x^2+6x-3-y^2+3y-\frac{9}{4}+\frac{61}{4}\)

\(=-3\left(x^2-2x+1\right)-\left(y^2-3y+\frac{9}{4}\right)+\frac{61}{4}\)

\(=-3\left(x-1\right)^2-\left(y-\frac{3}{2}\right)^2+\frac{61}{4}\)

Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow-3\left(x-1\right)^2\le0\forall x\)

\(\left(y-\frac{3}{2}\right)^2\ge0\forall x\)\(\Rightarrow-\left(y-\frac{3}{2}\right)^2\le0\forall y\)

\(\Rightarrow-3\left(x-1\right)^2-\left(y-\frac{3}{2}\right)^2\le0\forall x,y\)

\(\Rightarrow-3\left(x-1\right)^2-\left(y-\frac{3}{2}\right)^2+\frac{61}{4}\le\frac{61}{4}\forall x,y\)

hay \(P\le\frac{61}{4}\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x-1=0\\y-\frac{3}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{3}{2}\end{cases}}\)

Vậy \(maxP=\frac{61}{4}\)\(\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{3}{2}\end{cases}}\)

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
25 tháng 10 2020 lúc 21:56

P = -3x2 + 6x - y2 + 3y + 10

⇔ -P = 3x2 - 6x + y2 - 3y - 10

          = ( 3x2 - 6x + 3 ) + ( y2 - 3y + 9/4 ) - 61/4 

          = 3( x2 - 2x + 1 ) + ( y - 3/2 )2 - 61/4

          = 3( x - 1 )2 + ( y - 3/2 )2 - 61/4 ≥ -61/4 ∀ x, y

Dấu "=" xảy ra khi x = 1 ; y = 3/2

=> -P ≥ -61/4

=> P ≤ 61/4

=> MaxP = 61/4 ⇔ x = 1 ; y = 3/2

Khách vãng lai đã xóa

Các câu hỏi tương tự
ko biet
Xem chi tiết
ko biet
Xem chi tiết
ko biet
Xem chi tiết
thi hue nguyen
Xem chi tiết
Trân Quang Đăng
Xem chi tiết
Nguyễn Bảo Long
Xem chi tiết
Nguyễn Bảo Long
Xem chi tiết
Phạm Minh Quang
Xem chi tiết
An Mỹ Linh
Xem chi tiết