\(P=-3x^2+6x-y^2+3y+10\)
\(=-3x^2+6x-3-y^2+3y-\frac{9}{4}+\frac{61}{4}\)
\(=-3\left(x^2-2x+1\right)-\left(y^2-3y+\frac{9}{4}\right)+\frac{61}{4}\)
\(=-3\left(x-1\right)^2-\left(y-\frac{3}{2}\right)^2+\frac{61}{4}\)
Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow-3\left(x-1\right)^2\le0\forall x\)
\(\left(y-\frac{3}{2}\right)^2\ge0\forall x\)\(\Rightarrow-\left(y-\frac{3}{2}\right)^2\le0\forall y\)
\(\Rightarrow-3\left(x-1\right)^2-\left(y-\frac{3}{2}\right)^2\le0\forall x,y\)
\(\Rightarrow-3\left(x-1\right)^2-\left(y-\frac{3}{2}\right)^2+\frac{61}{4}\le\frac{61}{4}\forall x,y\)
hay \(P\le\frac{61}{4}\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x-1=0\\y-\frac{3}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{3}{2}\end{cases}}\)
Vậy \(maxP=\frac{61}{4}\)\(\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{3}{2}\end{cases}}\)
P = -3x2 + 6x - y2 + 3y + 10
⇔ -P = 3x2 - 6x + y2 - 3y - 10
= ( 3x2 - 6x + 3 ) + ( y2 - 3y + 9/4 ) - 61/4
= 3( x2 - 2x + 1 ) + ( y - 3/2 )2 - 61/4
= 3( x - 1 )2 + ( y - 3/2 )2 - 61/4 ≥ -61/4 ∀ x, y
Dấu "=" xảy ra khi x = 1 ; y = 3/2
=> -P ≥ -61/4
=> P ≤ 61/4
=> MaxP = 61/4 ⇔ x = 1 ; y = 3/2