Ôn thi vào 10

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đỗ Quyên

undefined

[Ôn thi vào 10]

Câu 1:

Giải phương trình và hệ phương trình sau:

a. \(\left(x+3\right)^2=16\)

b. \(\left\{{}\begin{matrix}2x+y-3=0\\\dfrac{x}{4}=\dfrac{y}{3}-1\end{matrix}\right.\)

Câu 2:

a. Rút gọn biểu thức: \(A=\left(\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right):\left(1-\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\) với \(x\ge0,x\ne1\)

b. Tìm \(m\) để phương trình \(x^2-5x+m-3=0\) có hai nghiệm phân biệt \(x_1,x_2\) thỏa mãn \(x_1^2-2x_1x_2+3x_2=1\)

Câu 3:

a. Tìm \(a\) và \(b\) biết đồ thị hàm số \(y=ax+b\) đi qua điểm \(A\left(-1;5\right)\) và song song với đường thẳng \(y=3x+1\)

b. Một đội xe phải chuyên chở 36 tấn hàng. Trước khi làm việc, đội xe đó được bổ sung thêm 3 xe nữa nên mỗi xe chở ít hơn 1 tấn so với dự định. Hỏi đội xe lúc đầu có bao nhiêu xe? Biết rằng số hàng chở trên tất cả các xe có khối lượng bằng nhau.

Câu 4:

Cho nửa đường tròn (O) đường kính AB. Gọi C là điểm cố định thuộc đoạn thẳng OB (C khác O và B). Dựng đường thẳng d vuông góc với AB tại điểm C, cắt nửa đường tròn (O) tại điểm M. Trên cung nhỏ MB lấy điểm N bất kỳ (N khác M và B), tia AN cắt đường thẳng d tại điểm F, tia BN cắt đường thẳng d tại điểm E. Đường thẳng AE cắt nửa đường tròn (O) tại điểm D (D khác A).

a. Chứng minh AD.AE=AC.AB

b. Chứng minh: Ba điểm B, F, D thẳng hàng và F là tâm đường tròn nội tiếp △CDN

c. Gọi I là tâm đường tròn ngoại tiếp △AEF. Chứng minh rằng điểm I luôn nằm trên một đường thẳng cố định khi điểm N di chuyển trên cung nhỏ MB

Câu 5

Cho \(a,b,c\) là ba số thực dương thỏa mãn \(abc=1\). Tìm giá trị lớn nhất của biểu thức:

\(P=\dfrac{ab}{a^5+b^5+ab}+\dfrac{bc}{b^5+c^5+bc}+\dfrac{ca}{c^5+a^5+ca}\)

Nguyễn Trọng Chiến
19 tháng 3 2021 lúc 11:00

Câu 5 : 

Ta chứng minh bđt phụ: \(x^5+y^5\ge xy\left(x^3+y^3\right)\forall x\in N\Leftrightarrow x^5+y^5-x^4y-xy^4\ge0\Leftrightarrow\left(x-y\right)x^4-y^4\left(x-y\right)\ge0\Leftrightarrow\left(x-y\right)\left(x^4-y^4\right)\ge0\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\left(x^2+y^2\right)\ge0\)

 \(\Rightarrow x^5+y^5\ge xy\left(x^3+y^3\right)\) (1)

\(x^3+y^3\ge xy\left(x+y\right)\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\Rightarrow x^3+y^3\ge xy\left(x+y\right)\left(2\right)\)

Áp dụng bđt (1) và (2): \(\Rightarrow\dfrac{ab}{a^5+b^5+ab}\le\dfrac{ab}{ab\left(a^3+b^3\right)+ab}\le\dfrac{ab}{a^2b^2\left(a+b\right)+ab}=\dfrac{1}{ab\left(a+b\right)+1}=\dfrac{abc}{ab\left(a+b+c\right)}=\dfrac{c}{a+b+c}\) Tương tự:

\(\dfrac{bc}{b^5+c^5+bc}\le\dfrac{a}{a+b+c};\dfrac{ca}{c^5+a^5+ca}\le\dfrac{b}{a+b+c}\)

\(\Rightarrow\sum\dfrac{ab}{a^5+b^5+ab}\le\sum\dfrac{c}{a+b+c}=\dfrac{a+b+c}{a+b+c}=1\)

Dấu = xảy ra \(\Leftrightarrow a=b=c\)=1

Nguyễn Lê Phước Thịnh
19 tháng 3 2021 lúc 12:34

Câu 1: 

a) Ta có: \(\left(x+3\right)^2=16\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=4\\x+3=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-7\end{matrix}\right.\)

Vậy: S={1;-7}

b) Ta có: \(\left\{{}\begin{matrix}2x+y-3=0\\\dfrac{x}{4}=\dfrac{y}{3}-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+y=3\\\dfrac{1}{4}x-\dfrac{1}{3}y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x+2y=6\\4x-\dfrac{16}{3}y=-16\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{22}{3}y=22\\2x+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\2x=3-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=3\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là (x,y)=(0;3)

Nguyễn Duy Khang
19 tháng 3 2021 lúc 12:42

Câu 1:

a)

\(\left(x +3\right)^2=16\\ \Leftrightarrow x+3=\pm4\\ \Leftrightarrow\left[{}\begin{matrix}x+3=4\\x+3=-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-7\end{matrix}\right.\)

Vậy tập nghiệm của pt là \(S=\left\{1;-7\right\}\)

b)

\(\left\{{}\begin{matrix}2x+y-3=0\\\dfrac{x}{4}=\dfrac{y}{3}-1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x+y=3\\\dfrac{3x}{12}=\dfrac{4x}{12}-\dfrac{12}{12}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x+y=3\\3x=4x-12\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x+y=3\\3x-4y=-12\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}8x+4y=12\\3x-4y=-12\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}11x=0\\2x+y=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=0\\2.0+y=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=0\\y=3\end{matrix}\right.\)

Vậy hpt có nghiệm là \(\left(x;y\right)=0;3\)

Nguyễn Duy Khang
19 tháng 3 2021 lúc 16:33

Câu 2:

a)

undefined 

 

Sachi
29 tháng 3 2021 lúc 19:45

Câu 3: Tick giúp ::

undefined

Sachi
29 tháng 3 2021 lúc 19:47

Câu 4:: Tick::

undefined

Ngô Thị Thanh Hoa
20 tháng 3 lúc 20:57

Cút ngay 


Các câu hỏi tương tự
Nguyễn Thị Quỳnh Như
Xem chi tiết
Đỗ Quyên
Xem chi tiết
Anh Quynh
Xem chi tiết
Ngoc Anh Thai
Xem chi tiết
Ngoc Anh Thai
Xem chi tiết
Thảo
Xem chi tiết
Ngoc Anh Thai
Xem chi tiết
Nguyên Thảo Lương
Xem chi tiết
hilo
Xem chi tiết