Cho khối tứ diện ABCD có thể tích bằng V, thể tích của khối đa diện có đỉnh là trung điểm các cạnh của tứ diện ABCD bằng V'. Tính tỉ số V'/V.
A. V ' V = 1 2
B. V ' V = 1 8
C. V ' V = 1 4
D. V ' V = 3 4
Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC và E là điểm đối xứng với B qua D. Mặt phẳng (MNE) chia khối tứ diện ABCD thành hai khối đa diện, trong đó khối đa diện chứa đỉnh A có thể tích V . Tính V .
A. 7 2 a 3 216
B. 11 2 a 3 216
C. 13 2 a 3 216
D. 2 a 3 18
Cho khối tứ diện có thể tích V. Gọi V' là thể tích của khối đa diện có các đỉnh là trung điểm của các cạnh tứ diện đã cho. Tỉnh tỉ số V ' V
A. V ' V = 1 4
B. V ' V = 5 8
C. V ' V = 3 8
D. V ' V = 1 2
Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trọng tâm của các tam giác ABD, ABC và E là điểm đối xứng với điểm B qua điểm D. Mặt phẳng (MNE) chia khối tứ diện ABCD thành hai khối đa diện, trong đó khối đa diện chứa đỉnh A có thể tích V. Tính V
Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC và E là điểm đối xứng với B qua D. Mặt phẳng (MNE) chia khối tứ diện ABCD thành hai khối đa diện, trong đó khối chứa điểm A có thể tích V. Tính V.
Cho tứ diện ABCD có thể tích bằng V. Gọi B’ và D’ lần lượt là trung điểm của cạnh AB và AD. Mặt phẳng(CB'D’) chia khối tứ diện thành hai phần. Tính theo V thể tích khối chóp C.B’D’DB?
A. 3 V 2
B. V 4
C. V 2
D. 3 V 4
Các trung điểm của các cạnh của một tứ diện đều cạnh a là các đỉnh của khối đa diện đều. Tính thể tích V của khối đa diện đều đó.
Tính thể tích V của khối nón ngoại tiếp hình tứ diện đều có cạnh bằng a (khối nón có đỉnh là một đỉnh của tứ diện và có đáy là hình tròn đi qua 3 đỉnh còn lại của tứ diện).
Tính thể tích V của khối nón ngoại tiếp hình tứ diện đều có cạnh bằng a (khối nón có đỉnh là một đỉnh của tứ diện và có đáy là hình tròn đi qua 3 đỉnh còn lại của tứ diện).