Muốn chứng minh ba điểm thẳng hàng ta chứng minh ba điểm đó là ba điểm chung của hai mặt phẳng phân biệt.
Muốn chứng minh ba điểm thẳng hàng ta chứng minh ba điểm đó là ba điểm chung của hai mặt phẳng phân biệt.
Nêu phương pháp chứng minh ba đường thẳng đồng quy.
Nêu phương pháp chứng minh Đường thẳng song song với đường thẳng
Nêu phương pháp chứng minh Đường thẳng song song với mặt phẳng
Chứng minh tính chất a.
Biến ba điểm thẳng hàng thành ba điểm thẳng hàng và bảo toàn thứ tự giữa các điểm ấy.
Gọi A’, B’ và C’ tương ứng là ảnh của ba điểm A, B và C qua phép đồng dạng. Chứng minh rằng nếu A B → = p A C → t h ì A ' B ' → = p A ' C ' → , trong đó p là một số. Từ đó chứng minh rằng phép đồng dạng biến ba điểm thẳng hàng thành ba điểm thẳng hàng và nếu điểm B nằm giữa hai điểm A và C thì điểm B' nằm giữa hai điểm A’ và C’.
Nêu phương pháp chứng minh Mặt phẳng song song với mặt phẳng.
Cho hai mặt phẳng (α) và (β) cắt nhau theo giao tuyến d. Trong (α) lấy hai điểm A và B sao cho AB cắt d tại I. O là một điểm nằm ngoài (α) và (β) sao cho OA và OB lần lượt cắt (β) tại A’ và B’.
a) Chứng minh ba điểm I, A’, B’ thẳng hàng.
b) Trong (α) lấy điểm C sao cho A, B, C không thẳng hàng. Giả sử OC cắt (β) tại C’, BC cắt B’C’ tại J, CA cắt C’A’ tại K. Chứng minh I, J, K thẳng hàng.
Cho tứ diện S.ABC có D, E lần lượt trung điểm AC, BC và G là trọng tâm tam giác ABC. Mặt phẳng (α) qua AC cắt SE, SB lần lượt tại M, N. Một mặt phẳng (β) qua BC cắt SD và SA lần lượt tại P và Q.
a) Gọi I = AM ∩ DN, J = BP ∩ EQ. Chứng minh bốn điểm S, I, J, G thẳng hàng.
b) Giả sử AN ∩ DM = K, BQ ∩ EP = L. Chứng minh ba điểm S, K, L thẳng hàng.
Một đoạn thẳng AB không vuông góc với mặt phẳng (α) cắt mặt phẳng này tại trung điểm O của đoạn thẳng đó. Các đường thẳng vuông góc với (α) qua A và B lần lượt cắt mặt phẳng (α) tại A' và B'.
Chứng minh ba điểm A', O, B' thẳng hàng và AA' = BB'