Nếu f ( x ) = 4 x ln 4 thì f ' ( x + 2 ) + 2 f ' ( x - 1 ) bằng
A. 33 2 ln 4 f ( x )
B. 16 ln 4 f ( x )
C. 65 4 ln 4 f ( x )
D. 24 ln 4 f ( x )
Gọi F(x) là một nguyên hàm của hàm số y = ln x x .
Nếu F e 2 = 4 t h ì ∫ ln x x d x b ằ n g
A. F x = ln 2 x 2 + C
B. F x = ln 2 x 2 + 2
C. F x = ln 2 x 2 - 2
D. F x = ln 2 x 2 + x + C
Gọi F(x) là một nguyên hàm của hàm số y = ln x x .
Nếu F e 2 = 4 t h ì ∫ ln x x d x b ằ n g
A. F x = ln 2 x 2 + C
B. F x = ln 2 x 2 + 2
C. F x = ln 2 x 2 - 2
D. F x = ln 2 x 2 + x + C
Giả sử F(x) là một nguyên hàm của f ( x ) = ln ( x + 3 ) x 2 sao cho F(-2)+F(1)=0. Giá trị của F(-1)+F(2) bằng
B. 0
Nếu ∫ f ( x ) d x = 1 x + ln | x | + C thì f ( x ) là:
Nếu F ( x ) là một nguyên hàm của hàm số f ( x ) = 1 x - 1 và F ( 2 ) = 1 thì F ( 3 ) bằng
A. 4
B. ln 3 2
C. ln 2 + 1
D. 0
Cho hàm số f ( x ) = ln ( 1 - 4 ( 2 x - 1 ) 2 ) . Biết rằng f ( 2 ) + f ( 3 ) + . . . + f ( 2020 ) = ln a b , trong đó a b là phân số tối giản, a , b ∈ N * . Tính b -3a
A. -2
B. 3
C. -1
D. 1
Cho hàm số f ( x ) = ln 1 - 4 ( 2 x - 1 ) 2 . Biết rằng ,f(2) + f(3) + ....+f(2020) = ln a b trong đó a b , là phân số tối giản, a, b ∈ ℕ * . Tính b - 3a
A. -2
B. 3
C. -1
D. 1
Cho hàm số y = f(x) liên tục trên khoảng 0 ; + ∞ . Biết f(1) = 1 và f(x) = xf'(x) + ln (x). Giá trị f(e) bằng
A. e
B. 1
C. 2
D. 1 e