1.Chứng minh các đẳng thức sau
a)(a+b+c)^2+(b+c-a)^2+(c+a-b)^2= 4(a^2+b^2+c^2)
b)(a+b+c+d)^2+(a+b+c-d)^2+(a+c-b-d)^2+(a+d-b-c)^2= 4(a^2+b^2+c^2+d^2)
c)(a^2-b^2-c^2-d^2)+2(ab-bc+cd+da)^2= (a^2+b^2+c^2+d^2)-2(ab-ad+bc+dc)^2
d)(a+b+c)^2+a^2+b^2+c^2= (a+b)^2+(b+c)^2=(c+a)^2
2. Chứng minh rằng
a) Nếu (a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d) thì a/b=c/d
b) Nếu (a+b+c)^2= 3(ab+bc+ca) thì a=b=c
Chứng minh rằng nếu
a, (a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d) và a, b, c, d là các số khác 0 thì a/c=b/d
b, (a-b)2 +(b-c)2+ (c-a)2= (a+b-2c)2+(b+c-2a)2+(c+a-2b)2 thì a=b=c
chứng minh rằng :
a, nếu : ( a+b+c+d ) (a-b-c+d) = ( a-b+c-d?)( a+b-c-d) thì \(\frac{a}{c}=\frac{b}{d}\)( a,b,c,d khác 0)
b, nếu a+b+c = 0 thì a3+b3+c3=3abc
giải chi tiết ra nha làm nhanh giúp mik , mai phải nộp rùi , thank kiu nhìu ( bn nào nhanh +đúng mik tick )
CMR: a)nếu a>b và c>d thì a+c>b+d b) Nếu a>b >0 và c>d>0 thì ac>bd
CMR: a)nếu a>b và c>d thì a+c>b+d b) Nếu a>b >0 và c>d>0 thì ac>bd
a)Chứng minh rằng nếu a^4 +b^4 +c^4 +d^4 =4abcd và a,b,c,d là các số dương thì a =b=c=d
b)Chứng minh rằng nếu m= a+ b +c thì (am+ bc )(bm+ac)(cm+ab)= (a+b)^2 (a+c )^2 (b+c)^2
Chứng minh rằng:
a) Nếu (a+b+c+d)(a-b-c-+d)=(a-b+c-d)(a+b-c-d) thì \(\frac{a}{b}\)=\(\frac{c}{d}\)(a,b,c,d khác 0)
b)Nếu a+b+c=0 thì a3+b3+c3=3abc
c)Cho x2=a2+b2+ab và a+b+c=0. Chứng minh 2x4=a4+b4+c4
Bài 1: CMR
a) (a2 + b2 ) (x2 + y2) = (ax - by)2 + (bx + ay)2
b) Nếu (a + b + c + d ) (a - b - c + d) = (a - b + c - d) ( a + b - c - d) thì \(\dfrac{a}{c}=\dfrac{b}{d}\) ( với a,b,c,d \(\ne\) 0 )
c) Nếu a + b + c = 4m thì 2ab + b2 + a2 - c2 = 16m2 - 8mc
d) Nếu (a - b)2 + (b - c)2 + (c - a)2 = 6abc thì a3 + b3 + c3 = 3abc (a + b + c +1)
CMR: Nếu
\(\left(a+b+c+d\right)\left(1-b-c-d\right)=\left(a-b+c-d\right)\left(a+b-c-d\right)\)
Thì:
\(\frac{a}{b}=\frac{c}{d}\)