cho biểu thức B = \(\dfrac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-ac-bc}\)
với a,b,c là các số khác nhau thoả mãn a+b+c=2016 thì giá trị biểu thức B là
cho các số a,b,c thỏa mãn \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)
cmr: \(\dfrac{1}{a^{2017}}+\dfrac{1}{b^{2017}}+\dfrac{1}{c^{2017}}=\dfrac{1}{a^{2017}+b^{2017}+c^{2017}}\)
cho ba số dương a,b,c thỏa mãn \(\dfrac{a^{ }}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}=\dfrac{1015}{2016}\)
tính giá trị biểu thức \(\dfrac{a^2}{a+c}+\dfrac{b^2}{a+b}+\dfrac{c^2}{c+b}\)
cho a, b, c là các số \(\ne\) 0 thỏa mãn: \(a^3+b^3+c^3=3abc\)
Tính giá trị biểu thức: \((1+\frac{a}{b})(1+\frac{b}{c})(1+\frac{c}{a})\).
Giúp tớ đi, huhu...
Cho a,b,c là các số thực dương thỏa mãn :ab>1.CMR:\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\)≥\(\frac{2}{1+ab}\)
1/ Tính Pmin= 4a2 + 4ab + 4b2 - 12a - 12b +12
2/Tính A = \(\dfrac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-ac-bc}\)với \(a\ne b\ne c\) thỏa mãn a+b+c=2016
Cho a,b,c là các số dương. Cm:
a. \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\)
b. \(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\ge\dfrac{3}{2}\)
Cho a,b,c là các số thực dương thỏa mãn:\(a^4+b^4+c^4=3\).CMR:\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)≥\(\frac{3}{2}\)
Cho a,b,c là các số thực dương thỏa mãn:a+b+c=1.CMR:\(\frac{ab+c}{a+b}+\frac{bc+a}{b+c}+\frac{ac+b}{a+c}\)≥2