A = C = 0 và B ≠ 0 ⇒ mặt phẳng (α) // hoặc trùng với (Oxz)
B = C = 0 và A ≠ 0 ⇒ mặt phẳng (α) // hoặc trùng với (Oyz)
A = C = 0 và B ≠ 0 ⇒ mặt phẳng (α) // hoặc trùng với (Oxz)
B = C = 0 và A ≠ 0 ⇒ mặt phẳng (α) // hoặc trùng với (Oyz)
Nếu B = 0 hoặc C = 0 thì mặt phẳng (α) có đặc điểm gì ?
Xét 3 điểm A, B, C của mặt phẳng phức theo thứ tự biểu diễn 3 số phức phân biệt z 1 , z 2 , z 3 thỏa mãn z 1 = z 2 = z 3 . Nếu z 1 + z 2 + z 3 = 0 thì tam giác ABC có đặc điểm gì ?
A. cân
B. vuông
C. có góc 1200
D. đều
Trong không gian Oxyz, cho mặt cầu (S): (x-1)²+ (y+2)²+ (z-3)²=27. Gọi (α) là mặt phẳng đi qua hai điểm A (0; 0; -4), B (2; 0; 0) và cắt (S) theo giao tuyến là đường tròn (C) sao cho khối nón đỉnh là tâm của (S) và đáy là là đường tròn (C) có thể tích lớn nhất. Biết rằng (α): ax+by-z+c=0, khi đó a-b+c bằng:
A. -4.
B. 8.
C. 0.
D. 2.
Cho ba điểm A(0;1;0), B(0;-2;0), C( 3 ; 0 ; 3 ). Tính góc α giữa mặt phẳng (ABC) và mặt phẳng (Oxz)
Cho tứ diện có các đỉnh là A(5; 1; 3), B(1; 6; 2), C(5; 0 ; 4), D(4; 0 ; 6). Hãy viết phương trình mặt phẳng ( α ) đi qua điểm D và song song với mặt phẳng (ABC).
Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(2;0;0) , B(1;-4;0), C(0;-2;6) và mặt phẳng ( α ) : x + 2y + z- 5 = 0. Gọi H(a;b;c) là hình chiếu vuông góc của trọng tâm tam giác ABC lên mặt phẳng ( α ) . Tính P = a - b + c.
A. 5
B. -3
C. 3
D. -1
Cho bốn điểm A(-2; 6; 3), B(1; 0; 6), C(0; 2; -1), D(1; 4; 0) Viết phương trình mặt phẳng (α) chứa AB và song song với CD.
Lập phương trình mặt phẳng ( α ) đi qua hai điểm A(0; 1; 0) , B(2; 3; 1) và vuông góc với mặt phẳng ( β ): x + 2y – z = 0 .
Cho mặt cầu S(0;R) và mặt phẳng ( α ). Gọi d là khoảng cách từ O tới ( α ). Khi d < R thì mặt phẳng ( α ) cắt mặt cầu S(O;R) theo giao tuyến là đường tròn có bán kính bằng:
A. R 2 + d 2 B. R 2 - d 2
C. R d d. R 2 - 2 d 2