Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Y-S Love SSBĐ

Nêu 7 hằng đẳng thức đáng nhớ

Mn vào trang cá nhân của mk và kb với mk nhé

Hk tốt

Triphai Tyte
10 tháng 10 2018 lúc 17:28
Bình phương của một tổng:

{\displaystyle (a+b)^{2}=a^{2}+2ab+b^{2}\,}

Bình phương của một hiệu:

{\displaystyle (a-b)^{2}=a^{2}-2ab+b^{2}\,}

Hiệu hai bình phương:

{\displaystyle a^{2}-b^{2}=(a-b)(a+b)\,}

Lập phương của một tổng:

{\displaystyle (a+b)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}\,}

Lập phương của một hiệu:

{\displaystyle (a-b)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}\,}

Tổng hai lập phương:

{\displaystyle a^{3}+b^{3}=(a+b)(a^{2}-ab+b^{2})=(a+b)^{3}-3a^{2}b-3ab^{2}=(a+b)^{3}-3ab(a+b)}

Hiệu hai lập phương:

{\displaystyle a^{3}-b^{3}=(a-b)(a^{2}+ab+b^{2})=(a-b)^{3}+3a^{2}b-3ab^{2}=(a-b)^{3}+3ab(a-b)}

Các hệ thức liên quan

{\displaystyle (a+b+c)^{3}=a^{3}+b^{3}+c^{3}+3(a+b)(b+c)(c+a)\,}{\displaystyle a^{3}+b^{3}+c^{3}-3abc=(a+b+c)(a^{2}+b^{2}+c^{2}-ab-bc-ca)\,}{\displaystyle (a-b-c)^{2}=a^{2}+b^{2}+c^{2}-2ab+2bc-2ca\,}{\displaystyle (a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2ab+2bc+2ca\,}{\displaystyle (a+b-c)^{2}=a^{2}+b^{2}+c^{2}+2ab-2bc-2ca\,}
Triphai Tyte
10 tháng 10 2018 lúc 17:28

cương khùng 

snvv 

Triphai Tyte
10 tháng 10 2018 lúc 17:30

1. (A+B)2 = A2+2AB+B2

2. (A – B)2= A2 – 2AB+ B2

3. A– B2= (A-B)(A+B)

4. (A+B)3= A3+3A2B +3AB2+B3

5. (A – B)3 = A3- 3A2B+ 3AB2- B3

6. A+ B3= (A+B)(A2- AB +B2)

7. A3- B3= (A- B)(A2+ AB+ B2)

8. (A+B+C)2= A2+ B2+C2+2 AB+ 2AC+ 2BC

cái kia bị lỗi nha 


Các câu hỏi tương tự
Y-S Love SSBĐ
Xem chi tiết
Phạm Mạnh Cường
Xem chi tiết
nguyễn thị lan trinh
Xem chi tiết
Kim Nhật Lan Anh
Xem chi tiết
zerro kute
Xem chi tiết
đam mê
Xem chi tiết
Vương Quốc Anh
Xem chi tiết
Huyềnkute
Xem chi tiết