Chọn (A) có hai đỉnh cùng nhìn một cạnh dưới hai góc bằng nhau.
Chọn (A) có hai đỉnh cùng nhìn một cạnh dưới hai góc bằng nhau.
Chọn câu sai trong các câu sau:
A Nếu một tứ giác có tổng hai góc đối nhau bằng 180c thì đó là tứ giác nội tiếp.
B Tứ giác có hai góc vuông thì là tứ giác nội tiếp.
C Một tứ giác có bốn đỉnh cùng nằm trên một đường tròn được gọi là tứ giác nội tiếp nội tiếp đường tròn.
D Trong một tứ giác nội tiếp, tổng hai góc đối nhau bằng 180c
Mỗi câu sau đây đúng hay sai?
a) Mỗi tam giác luôn có một đường tròn ngoại tiếp và một đường tròn nội tiếp
b) Mỗi tứ giác luôn có một đường tròn ngoại tiếp và một đường tròn nội tiếp
c) Giao điểm ba đường trung tuyến của một tam giác là tâm đường tròn ngoại tiếp tam giác ấy
d) Giao điểm ba đường trung trực của một tam giác là tâm đường tròn ngoại tiếp tam giác ấy.
e) Giao điểm ba đường phân giác trong của một tam giác là tâm đường tròn nội tiếp tam giác ấy.
f) Giao điểm ba đường cao của một tam giác là tâm đường tròn nội tiếp tam giác ấy.
g) Tứ giác có tổng độ dài các cặp cạnh đối nhau bằng nhau thì ngoại tiếp được đường tròn
h) Tứ giác có tổng số đo các cặp góc (trong) đối nhau bằng nhau thì nội tiếp được đường tròn.
i) Đường tròn tiếp xúc với các đường thẳng chứa các cạnh của tam giác là đường tròn nội tiếp tam giác đó.
Cho tứ giác lồi ABCD. CMR nếu tồn tại một đường tròn nội tiếp tứ giác và một đường tròn tiếp xúc với các cạnh kéo dài của nó thì:
a) AB+DC=AD+BC
b) AB-DC=AD-BC
c) Các đường chéo của tứ giác vuông góc với nhau.
Cho tứ giác ABCD nội tiếp đường tròn (O) có hai đường chéo AC và BD vuông góc với nhau tại I.Gọi E,F,G,H lần lượt là trung điểm của các cạnh AB, BC,CD,AD.C/m
1) tứ giác EFGH là hcn
2) GIEO là hbh
3)hình chiếu của điểm I trên các cạnh và trung điểm của các cạnh của tứ giác ABCD cùng nằm trên một đường tròn
Cho tam giác ABC cân tại A có cạnh đáy nhỏ hơn cạnh bên nội tiếp đường tròn tâm O bán kính r .Tiếp tuyến tại B và C của đường tròn tâm O bán kính r cắt nhau tại D.
a) Chứng minh tứ giác ABC nội tiếp được đường tròn
b) Đường thẳng BD và AC cắt nhau tại E Chứng minh EB²= EC×EA
c) Từ m trên cung nhỏ BC vẽ MI vuông góc với BC MH vuông góc với AB MF vuông góc với AC Chứng minh E,H,F thẳng hàng
d) cho góc BAC bằng 30 độ Tính theo r diện tích của tứ giác ABCD
Cho tứ giác ABCD nội tiếp đường tròn (O). Hai cạnh đối AB và CD cắt nhau tại một điểm M ở ngoài (O), biết ∠BAD = 60 0 thì góc BMC bằng:
A. 120 0
B. 60 0
C. 90 0
D. 30 0
Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn tâm (O). Từ B và C vẽ hai tiếp tuyến của đường tròn, hai tiếp tuyến này cắt nhau ở D. Qua D vẽ một cát tuyến sonng song với AB, cát tuyến này cắt đường tròn tại các điểm M và N và cắt cạnh AC tai I
a) Chứng minh tứ giác OBDC nội tiếp đường tròn (O)
b) Chứng minh I là trung điểm của dây MN
Chứng minh nếu tổng hai cặp cạnh đối của 1 tứ giác không bằng nhau thì tứ giác đó không nội tiếp được trong một đường tròn
Cho tứ giác ABCD nội tiếp trong một đường tròn và P là trung điểm của cung AB không chứa C và D. Hai dây PC và PD lần lượt cắt AB tại E và F. Các dây AD và PC kéo dài cắt nhau tại I: các dây BC và PD kéo dài cắt nhau tại K. Chứng minh rằng:
a/ Góc CID bằng góc CKD.
b/ Tứ giác CDFE nội tiếp được
. c/ IK // AB.
d/ Đường tròn ngoại tiếp tam giác AFD tiếp xúc với PA tại A. ai giúp em câu d với ạ