Cho mặt cầu (S) có bán kính R = 5 (cm). Mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là đường tròn (C) có chu vi bằng 8 π (cm). Bốn điểm A, B, C, D thay đổi sao cho A, B, C thuộc đường tròn (C), điểm D thuộc (S) (D không thuộc đường tròn (C)) và tam giác ABC là tam giác đều. Thể tích lớn nhất của khối tự diện ABCD bằng bao nhiêu?
A. 32 3 ( c m 3 )
B. 60 3 ( c m 3 )
C. 20 3 ( c m 3 )
D. 96 3 ( c m 3 )
Cắt một mặt cầu (S) bởi một mặt phẳng qua tâm được thiết diện là một hình tròn có đường kính bằng 4cm. Tính thể tích của khối cầu?
Một hình trụ có diện tích xung quanh bằng S, diện tích đáy bằng diện tích một mặt cầu bán kính a. Khi đó thể tích của hình trụ bằng:
A. Sa
B. 1 2 Sa
C. 1 3 Sa
D. 1 4 Sa
Cắt một mặt cầu (S) bởi một mặt phẳng qua tâm được thiết diện là hình tròn có đường kính bằng 4 cm. Tính thể tích của khối cầu.
Tính diện tích S của mặt cầu có đường kính bằng 2a.
Tính diện tích S của mặt cầu có đường kính bằng 6.
Tính diện tích S của mặt cầu có đường kính bằng 6
Tính diện tích S của mặt cầu có đường kính bằng 2a.
Một hình trụ có hai đường tròn đáy nằm trên một mặt cầu bán kính R và có đường cao bằng bán kính mặt cầu. Diện tích toàn phần hình trụ đó bằng: