Kí hiệu A và B lần lượt là tập các học sinh đăng kí môn bóng đá và cầu lông.
Ta có A ∪ B = 40. Theo quy tắc cộng mở rộng ta có:
n (A ∩ B) = n(A) + n(B) − n(A ∪ B) = 30 + 25 - 40 = 15
Vậy có 15 em đăng kí chơi hai môn thể thao.
Kí hiệu A và B lần lượt là tập các học sinh đăng kí môn bóng đá và cầu lông.
Ta có A ∪ B = 40. Theo quy tắc cộng mở rộng ta có:
n (A ∩ B) = n(A) + n(B) − n(A ∪ B) = 30 + 25 - 40 = 15
Vậy có 15 em đăng kí chơi hai môn thể thao.
Trong một lớp 10 có 50 học sinh. Khi đăng ký cho học phụ đạo thì có 38 học sinh đăng ký học Toán, 30 học sinh đăng ký học Lý, 25 học sinh đăng ký học cả Toán và Lý. Nếu chọ ngẫu nhiên 1 học sinh của lớp đó thì xác suất để em này không đăng ký học phụ đạo môn nào cả là bao nhiêu
A. 0,07
B. 0,14
C. 0,43
D. Kết quả khác
Một lớp có 20 học sinh đăng kí dự thi tổ hợp Khoa học tự nhiên, 25 học sinh đăng kí dự thi tổ hợp Khoa học xã hội và 5 học sinh đăng kí dự thi cả hai tổ hợp trên. Số cách chọn lần lượt 3 học sinh trong lớp bằng
Hùng và Hương cùng tham gia kì thi THPTQG 2019, ngoài thi 3 môn bắt buộc là Toán, Văn, Anh thì cả hai đều đăng kí thi thêm 2 trong 3 môn tự chọn là Lý, Hóa, Sinh để xét tuyển vào Đại học. Các môn tự chọn sẽ thi theo hình thức trắc nghiệm, mỗi môn có 6 mã đề thi khác nhau, mã đề thi của các môn khác nhau sẽ khác nhau. Tính xác suất để Hùng và Hương chỉ có chung đúng một môn tự chọn và một mã đề thi.
A. 2 21
B. 5 21
C. 1 9
D. 2 9
Trong cụm thi để xét công nhận tốt nghiệp THPT thí sinh phải thi 4 môn trong đó có 3 môn bắt buộc là Toán, Văn, Ngoại ngữ và 1 môn do thí sinh tự chọn trong số các môn: Vật lí, Hóa học, Sinh học, Lịch sử và Địa lí. Trường X có 40 học sinh đăng kí dự thi, trong đó 10 học sinh chọn môn Vật lí và 20 học sinh chọn môn Hóa học. Lấy ngẫu nhiên 3 học sinh bất kỳ của trường X. Tính xác suất để trong 3 học sinh đó luôn có học sinh chọn môn Vật lí và học sinh chọn môn Hóa học?
A.
B.
C.
D.
Trong cụm thi để xét tốt nghiệm Trung học phổ thông thí sinh phải thi 4 môn trong đó có 3 môn bắt buộc là Toán, Văn, Ngoại ngữ và 1 môn do thí sinh tự chọn trong số các môn Vật lý, Hóa học, Sinh học, Lịch sử và Địa lí. Trường X có 40 học sinh đăng kí dự thi, trong đó 10 học sinh chọn môn Vật lý và 20 học sinh chọn môn hóa học. Lấy ngẫu nhiên 3 học sinh bất kỳ của trường X, tính xác suất để 3 học sinh đó luôn có học sinh chọn môn Vật lý và học sinh chọn môn Hóa học.
A.
B.
C.
D.
Tuấn và Hùng cùng tham gia kì thi THPTQG năm 2018, ngoài thi ba môn Toán, Văn, Tiếng Anh bắt buộc thì Tuấn và Hùng đều đăng kí thi thêm đúng hai môn tự chọn khác trong ba môn của tổ hợp KHTN là Vật lí, Hóa học và Sinh học dưới hình thức thi trắc nghiệm để xét tuyển Đại học. Mỗi môn tự chọn trắc nghiệm có 6 mã đề thi khác nhau, mã đề thi của các môn khác nhau là khác nhau. Tìm xác xuất để Tuấn và Hùng có chung đúng một môn thi tự chọn và chung một mã đề.
A. 2 9
B. 3 7
C. 1 9
D. 5 8
Tại một cụm thi THPTQG 2018 dành cho thí sinh đăng ký thi 4 môn, trong đó có 3 môn bắt buộc là Toán, Văn, Ngoại ngữ và 1 môn do thí sinh tự chọn trong các môn. Lý, Hóa, Sinh, Sử, Địa. Trường X có 30 học sinh đăng ký dự thi, trong đó có 10 học sinh chọn thi môn Sử. Trong buổi đầu tiên làm thủ tục dự thi, phóng viên truyền hình đã đến chọn ngấu nhiên 5 học sinh của trường X để phỏng vấn, tính xác xuất P để trong 5 học sinh đó có nhiếu nhất 2 học sinh chọn thi môn Sử.
A.
B.
C.
D.
Tại một cụm thi THPTQG 2018 dành cho thí sinh đăng ký thi 4 môn, trong đó có 3 môn bắt buộc là Toán, Văn, Ngoại ngữ và 1 môn do thí sinh tự chọn trong các môn. Lý, Hóa, Sinh, Sử, Địa. Trường X có 30 học sinh đăng ký dự thi, trong đó có 10 học sinh chọn thi môn Sử. Trong buổi đầu tiên làm thủ tục dự thi, phóng viên truyền hình đã đến chọn ngẫu nhiên 5 học sinh của trường X để phỏng vấn, xác suất để trong 5 học sinh đó có nhiều nhất 2 học sinh chọn thi môn Sử bằng
A. 112554 152406
B. 115524 142560
C. 115254 142506
D. 115252 142565
Trong kì thi THPT Quốc Gia, mỗi phòng thi gồm 24 thí sinh được sắp xếp vào 24 bàn khác nhau. Bạn Nam là một thí sinh dự thi, bạn đăng kí 4 môn thi và cả 4 lần đều thi tại 1 phòng duy nhất. Giả sử giám thị xếp thí sinh vào vị trí một cách ngẫu nhiên, tính xác suất để trong 4 lần thi thì bạn Nam có đúng 2 lần ngồi vào cùng 1 vị trí.