Cho hình nón đỉnh S, chiều cao S0=h, bán kính đáy bằng R. Gọi M là điểm nằm trên đoạn SO, đặt OM=x ( 0 < x < h Cắt hình nón bằng mặt phẳng (P) đi qua M và vuông góc với SO, thiết diện thu được là đường tròn (C). Tìm x để thể tích của khối nón đỉnh O đáy là hình tròn giới hạn bởi (C) đạt giá trị lớn nhất.
Cho hình nón (N) có đường cao SO = h và bán kính đáy bằng R, gọi M là điểm trên đoạn SO, đặt OM = x (0 < x < h). (C) là thiết diện của mặt phẳng (P) vuông góc với trục SO tại M, với hình nón (N). Giá trị x theo h để thể tích khối nón đỉnh O đáy là (C) lớn nhất là:
A. x = h 2
B. x = h 2 2
C. x = h 3 2
D. x = h 3
Cho hình nón (N) có đường cao SO=h và bán kính đáy bằng R, gọi M là điểm trên đoạn SO, đặt OM=x, 0<x<h. (C) là thiết diện của mặt phẳng (P) vuông góc với trục SO tại M, với hình nón (N). Tìm x để thể tích khối nón đỉnh O đáy là (C) lớn nhất.
Cho hình nón (N) có đường cao SO = h và bán kính đáy bằng R , gọi M là điểm trên đoạn SO , đặt OM = x, 0<x<h. (C) là thiết diện của mặt phẳng (P) vuông góc với trục SO tại M , với hình nón (N). Tìm x để thể tích khối nón đỉnh O đáy là (C) lớn nhất.
Cho hình nón (N) có đường cao SO = h và bán kính đáy bằng R , gọi M là điểm trên đoạn SO , đặt OM = x, 0<x<h. (C) là thiết diện của mặt phẳng (P) vuông góc với trục SO tại M , với hình nón (N). Tìm x để thể tích khối nón đỉnh O đáy là (C) lớn nhất.
Cho hình nón tròn xoay (N) có đỉnh S và đáy là hình tròn tâm O bán kính r nằm trên mặt phẳng (P) đường cao SO=h Điểm O’ thay đổi trên đoạn SO sao cho SO’=x (0<x<h). Hình trụ tròn xoay (T) có đáy thứ nhất là hình tròn tâm O bán kính r’ (0<r’<r) nằm trên mặt phẳng (P), đáy thứ hai là hình tròn tâm O’ bán kính r’ nằm trên mặt phẳng (Q), (Q) vuông góc với SO tại O’ (đường tròn đáy thứ hai của (T) là giao tuyến của (Q) với mặt xung quanh của (N). Hãy xác định giá trị của x để thể tích phần không gian nằm phía trong (N) nhưng phía ngoài của (T) đạt giá trị nhỏ nhất.
Cho hình nón có đỉnh S, đáy là hình tròn tâm O, bán kính R=3cm, góc ở đỉnh của hình nón là φ = 120 0 . Cắt hình nón bởi một mặt phẳng qua đỉnh S tạo thành tam giác đều SAB, trong đó A,B thuộc đường tròn đáy. Diện tích của tam giác SAB bằng
Cho hình nón tròn xoay đỉnh S, đáy là một hìnht tròn tâm O bán kính R, chiều cao của hình nón bằng 2R. Gọi I là một điểm nằm trên mặt phẳng đáy sao cho IO = 2R. Giả sử A là điểm trên đường tròn (O) sao cho OA ⊥ OI. Diện tích xung quanh của hình nón bằng:
Cho hình nón tròn xoay có đường cao h = 5 bán kính đáy r = 3. Mặt phẳng (P) qua đỉnh của hình nón nhưng không qua trục của hình nón và cắt hình nón theo giao tuyến là một tam giác cân có độ dài cạnh đáy bằng 4. Gọi O là tâm của hình tròn đáy. Tính khoảng cách d từ điểm O đến mặt phẳng (P).