Sđ cung AB = π/3 + k2π, k ∈ Z
Sđ cung AC = 2π/3 + k2π, k ∈ Z
Sđ cung AD = π + k2π, k ∈ Z
Sđ cung AE = 4π/3 + k2π, k ∈ Z
Sđ cung AF = 5π/3 + k2π, k ∈ Z
Sđ cung AB = π/3 + k2π, k ∈ Z
Sđ cung AC = 2π/3 + k2π, k ∈ Z
Sđ cung AD = π + k2π, k ∈ Z
Sđ cung AE = 4π/3 + k2π, k ∈ Z
Sđ cung AF = 5π/3 + k2π, k ∈ Z
Cho hình ngũ giác đều ABCDE (các đỉnh lấy theo thứ tự đó và thuận chiều quay của kim đồng hồ) nội tiếp trong đường tròn lượng giác. Số đo bằng radian của các cung lượng giác AB, DA, FA lần lượt là
Cho lục giác đều ABCDEF tâm O. Hãy chỉ ra các vectơ bằng vectơ AB có điểm đầu và điểm cuối là O hoặc các đỉnh của lục giác.
Cho tam giác ABC nhọn nội tiếp đường tròn (O). H là trực tâm của tam giác ABC.
AD là đường kính của (O). E thuộc AC sao cho HE//BC.
1). Chứng minh rằng các đường thẳng BH và DE cắt nhau trên (O)
2). Gọi F là giao điểm của các đường thẳng EH và AB. Chứng minh rằng A là tâm đường tròn bàng tiếp ứng với đỉnh D của tam giác DEF
3). Gọi I là tâm đường tròn nội tiếp của tam giác DEF. Chứng minh rằng BE, CF và IH đồng quy.
Cho lục giác đều ABCDEF. Hãy biểu diễn các vectơ AC,AD,AF,EF theo các vectơ u=AB, v=AE
cần gấp ạ mai mk học rồi. thanks
Cho tam giác ABC nội tiếp đường tròn (O). P di chuyển trên cung B C ⏜ chứa A của (O).
I là tâm đường tròn nội tiếp tam giác ABC. Q là tâm đường tròn nội tiếp tam giác PBC.
1). Chứng minh rằng B, I, Q, C cùng nằm trên một đường tròn.
2) Trên tia BQ, CQ lần lượt lấy các điểm M, N sao cho B M = B I , C N = C I . Chứng minh rằng MN luôn đi qua một điểm cố định.
Bài 4 : ( 3,5 điểm)
1) Cho đường tròn (O; R) và dây BC cố định, BC= R√3 A là điểm di động trên cung lớn BC (A khác B, C) sao cho tam giác ABC nhọn. Các đường cao BD và CE của tam giác ABC cắt nhau tại điểm H. Kẻ đường kính AF của đường tròn (O), AF cắt BC tại điểm N.
a) Chứng minh tứ giác BEDC là tứ giác nội tiếp
b) Chứng minh AE.AB = AD.AC
c) Gọi I là trung điểm của BC
Chứng minh rằng F, I, H thẳng hàng
2) Một hình trụ có diện tích xung quanh bằng 128π cm2, chiều cao bằng bán kính đáy. Tính thể tích của hình trụ đó
Bài 4 : ( 3,5 điểm)Cho tam giác ABC nhọn, vẽ đường tròn (O) đường kính BC cắt AB, AC lần lượt tại F và E. CF cắt BE tại H.
a) Chứng minh tứ giác AEHF nội tiếp
b) Gọi I là tâm đường tròn ngoại tiếp tứ giác AEHF, Tính số đo cung EHF, diện tích hình quạt IEHF của đường tròn (I) nếu góc BAC = 60o, AH = 4 cm.
c) AH giao BC tại D. Chứng minh FH là tia phân giác của góc DFE
d) Chứng minh 2 tiếp tuyến của (O) tại E, F và AH đồng quy tại 1 điểm
Cho lục giác đều ABCDEF tâm O . Hỏi có bao nhiêu vecto khác vecto không; cùng phương với O C → có điểm đầu và điểm cuối là các đỉnh của lục giác?
A. 3
B. 5
C. 6
D. 8
Cho hình lục giác đều ABCDEF có tâm O.
a) Tìm các vectơ bằng vectơ OA, AB
b)Ngược hướng với OC