Bài 1: \(P=\left(a+b\right)^2-4ab\)
\(=a^2+2ab+b^2-4ab\)
\(=a^2+\left(2ab-4ab\right)+b^2\)
\(=a^2-2ab+b^2\)
\(=\left(a-b\right)^2\)
\(=5^2\)
\(=25\)
Bài 2: \(M=a^3+b^3+3ab\)
\(=\left(a^3+b^3\right)+3ab\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\)
\(=1.\left(a^2-ab+b^2\right)+3ab\)
\(=a^2-ab+b^2+3ab\)
\(=a^2+\left(3ab-ab\right)+b^2\)
\(=a^2+2ab+b^2\)
\(=\left(a+b\right)^2\)
\(=1^2=1\)
Bài 3 : Ta có : \(\left(2n+1\right)^2-\left(2n-1\right)^2\)
\(=\left(2n\right)^2+2.2n.1+1^2-\left(2n\right)^2+2.2n.1-1^2\)
\(=4.n+4.n\)
\(=8n\)Chia hết cho 8