Ta có :
\(x^{20}+x+1\)
\(=\left(x^{20}-x^2\right)+\left(x^2+x+1\right)\)
Đặt \(x^2+x+1=A\)
\(\Rightarrow x^{20}+x+1=x^2\left(x^{18}-1\right)+A\)
\(=x^2\left(x^9+1\right)\left(x^9-1\right)+A\)
\(=\left(x^{11}+x^2\right)\left[\left(x^3\right)^3-1^3\right]+A\)
\(=\left(x^{11}+x^2\right)\left(x^6+1+x^3\right)\left(x^3-1\right)+A\)
\(=\left(x^{17}+x^{14}+x^{11}+x^8+x^5+x^2\right)\left(x-1\right)\left(x^2+x+1\right)+A\)
\(=A.\left(x^{18}-x^{17}+x^{15}-x^{14}+x^{12}-x^{11}+x^9-x^8+x^6-x^5+x^3-x^2\right)+A\)
\(=A.\left(x^{18}-x^{17}+x^{15}-x^{14}+x^{12}-x^{11}+x^9-x^8+x^6-x^5+x^3-x^2+1\right)\)
\(=\left(x^2+x+1\right)\left(x^{18}-x^{17}+x^{15}-x^{14}+x^{12}-x^{11}+x^9-x^8+x^6-x^5+x^3-x^2+1\right)\)