a, ĐKXĐ:\(x\ne0,x\ne2\)
\(\dfrac{2}{x-2}-\dfrac{1}{x}=\dfrac{3}{x\left(x-2\right)}\\ \Leftrightarrow\dfrac{2x}{x\left(x-2\right)}-\dfrac{x-2}{x\left(x-2\right)}-\dfrac{3}{x\left(x-2\right)}=0\\ \Leftrightarrow\dfrac{2x-x+2-3}{x\left(x-2\right)}=0\\ \Rightarrow x-1=0\\ \Leftrightarrow x=1\left(tm\right)\)
b, ĐKXĐ:\(x\ne\pm3\)
\(\dfrac{1}{x+3}-\dfrac{2x-1}{x-3}=\dfrac{x^2-15}{x^2-9}\\ \Leftrightarrow\dfrac{x-3}{\left(x-3\right)\left(x+3\right)}-\dfrac{\left(2x-1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{x^2-15}{\left(x-3\right)\left(x+3\right)}=0\\ \Leftrightarrow\dfrac{x-3-\left(2x^2-x+6x-3\right)-\left(x^2-15\right)}{\left(x-3\right)\left(x+3\right)}=0\\ \Rightarrow x-3-2x^2+x-6x+3-x^2+15=0\\ \Leftrightarrow-3x^2-4x+15=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\left(tm\right)\\x=-3\left(ktm\right)\end{matrix}\right.\)