Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Mèocute

Mn gíp e với,em đang cần gấp ạ🥺🥺

Đỗ Trung Hiếu
3 tháng 6 2021 lúc 15:47

a) Vì ABCD là hình bình hành ( gt )

⇒ AD // BC 

      F ∈ BC

⇒ AD // BF

⇒ ∠EDA = ∠EFB ( hai góc so le trong )

Xét △AED và △BEF, có :

∠EDA = ∠EFB ( cmt )

∠AED = ∠FEB ( hai góc đối đỉnh )

⇒ △AED ∼ △BEF (g-g)

b) Vì ABCD là hình bình hành ( gt )

⇒ AB // CD 

      E ∈ AB

⇒ BE // CD

Xét △FDC, có :

BE // CD ( cmt )

E ∈ DF ; B ∈ DC 

⇒ \(\dfrac{FB}{FC}=\dfrac{EB}{DC}\) (Hệ quả của định lí Ta-let)

⇒ \(\dfrac{BF}{BE}=\dfrac{FC}{DC}\) (1)

Vì △AED ∼ △BEF ( cmt )

⇒ \(\dfrac{AE}{BE}=\dfrac{AD}{BF}\) (TSDD)

⇒ \(\dfrac{AE}{AD}=\dfrac{BE}{BF}\) (2)

Từ (1) và (2) ⇒ \(\dfrac{AE}{AD}=\dfrac{CF}{CD}\)

⇒ AD.CD = AE.CF

c) Xét △DGC, có : 

AE // DC ( cmt )

G ∈ AC ; G ∈ DE

⇒ \(\dfrac{DG}{DE}=\dfrac{GC}{AC}\) (Hệ quả của định lí Ta-let) (3)

Xét △FGC, có : 

AD // CF ( cmt )

G ∈ AC ; G ∈ DF

⇒ \(\dfrac{DG}{DF}=\dfrac{AG}{AC}\) (Hệ quả của định lí Ta-let) (4)

Từ (3) và (4) ⇒ \(\dfrac{DG}{DE}+\dfrac{DG}{DF}=\dfrac{GC}{AC}+\dfrac{AG}{AC}\)

                     ⇒ \(\dfrac{DG}{DE}+\dfrac{DG}{DF}\)  =  1

                     ⇒  \(\dfrac{1}{DG}\left(\dfrac{DG}{DE}+\dfrac{DG}{DF}\right)=\dfrac{1}{DG}\)

                     ⇒  \(\dfrac{1}{DG}=\dfrac{1}{DE}+\dfrac{1}{DF}\)

                          

 


Các câu hỏi tương tự
Manhmoi
Xem chi tiết
phuonguyen le
Xem chi tiết
phuonguyen le
Xem chi tiết
Trần Cường
Xem chi tiết
D Hdjd
Xem chi tiết
Mèocute
Xem chi tiết
Ahjhjhj
Xem chi tiết
✨phuonguyen le✨
Xem chi tiết
Minh hậu
Xem chi tiết