Vì \(n\inℕ\)nên \(\left(7n\right)\inℕ\Rightarrow\left(7n-11\right)\in\varnothing\)
(7n-11)3 = 25.25 + 200
(7n-11)3 = 625 + 200
(7n-11)3 = 825
mà \(825\ne a^3\forall a\inℕ\)
nên \(\left(7n-11\right)\in\varnothing\)
Vậy \(n\in\varnothing\)
Ta có:
\(\left(7n-11\right)^3=25\cdot25+200\)
\(\Leftrightarrow\left(7n-11\right)^3=625+200\)
\(\Leftrightarrow\left(7n-11\right)^3=825\)
\(\Leftrightarrow7n-11=\sqrt[3]{825}\Rightarrow n=\frac{\sqrt[3]{825}+11}{7}\)