mi nói ai là thánh hả :
tao là thánh tè bậy đây
phải nói thêm chữ thánh tè bậy thì ta mới trả lời cho
mi nói ai là thánh hả :
tao là thánh tè bậy đây
phải nói thêm chữ thánh tè bậy thì ta mới trả lời cho
giải hệ phương trình :
\(\hept{\begin{cases}x^2+y^2=1\\\sqrt[2016]{x}-\sqrt[2016]{y}=\left(\sqrt[2017]{y}-\sqrt[2017]{x}\right)\left(x+y+xy+2017\right)\end{cases}}\)
a, \(\hept{\begin{cases}\left(x+y+z\right)^2=3\left(xy+yz+xz\right)\\x^{2017}+y^{2017}+z^{2017}=3^{2018}\end{cases}}\)
b,\(\hept{\begin{cases}x^3=y^3+9\\x-x^2=2y^2+4y\end{cases}}\)
c,\(\hept{\begin{cases}\sqrt{x}+\sqrt{2017-y}=\sqrt{2017}\\\sqrt{y}+\sqrt{2017-x}=\sqrt{2017}\end{cases}}\)
d,\(\hept{\begin{cases}x+y=z\\x^3+y^3=2z^2\end{cases}}\)với x,y,z là các số nguyên
Bài 1: Giải hệ phương trình
a) \(\hept{\begin{cases}\left(x+y\right)\left(x^2+y^2\right)=15\\\left(x-y\right)\left(x^2-y^2\right)=3\end{cases}}\)
b) \(\hept{\begin{cases}x^2+y^2=1\\\sqrt[2017]{x}-\sqrt[2017]{y}=\left(\sqrt[2018]{y}-\sqrt[2018]{x}\right)\left(x+y+xy+2019\right)\end{cases}}\)
c) \(\hept{\begin{cases}xz=x+4\\2y^2=7xz-3x-14\\x^2+z^2=35-y^2\end{cases}}\)
Bài 2: Cho a,b,x,y thỏa mãn hệ:
\(ax+by=3\)
\(ax^2+by^2=5\)
\(ax^3+by^3=9\)
\(ax^4+by^4=17\)
Tính:
\(A=ax^5+by^5\)
\(B=ax^{2017}+by^{2017}\)
vậy giúp câu này nhé mấy thánh hệ phương trình
\(\hept{\begin{cases}x+y=\sqrt[3]{2014}\\\left(\sqrt{x}+\sqrt{y}\right)\left(\frac{1}{\sqrt{x+3y}}+\frac{1}{\sqrt{y+3x}}\right)=2\end{cases}}\)
Tìm x ; y biết: \(\hept{\begin{cases}x^{2017}+y^{2017}=1\\\sqrt[2017]{x}-\sqrt[2017]{y}=\left(\sqrt[2016]{y}-\sqrt[2016]{x}\right)\left(x+y+xy+2017\right)\end{cases}}\)
Đồng bào thân thiện đáng yêu cứu toy với :((
Giải hệ phương trình : \(\hept{\begin{cases}\sqrt[3]{\frac{2x+1}{y+2}}+\sqrt[3]{\frac{y+2}{2x+1}}=2\\4x+3y=7\end{cases}}\)
Giải hệ phương trình : \(\hept{\begin{cases}\sqrt{x^2+2y+3}+2y-3=0_{ }\\2\left(2y^3+x^3\right)+3y\left(x+1\right)^2+6x\left(x+1\right)+2=0\end{cases}^{ }}\)
Giải hệ phương trình : \(\hept{\begin{cases}\sqrt{2x-3}=\left(y^2+2016\right)\left(5-y\right)+\sqrt{y}\\y\left(y-x+2\right)=3x+3\end{cases}}\)
Cảm ơn mọi người nhé hiuhiu <3
Giải hệ phương trình:
1) \(\hept{\begin{cases}\sqrt[3]{x-y}=\sqrt{x-y}\\x+y=\sqrt{x+y+2}\end{cases}}\)
2) \(\hept{\begin{cases}x-\frac{1}{x}=y-\frac{1}{y}\\2y=x^3+1\end{cases}}\)
3) \(\hept{\begin{cases}\left(x-y\right)\left(x^2+y^2\right)=13\\\left(x+y\right)\left(x^2-y^2\right)=25\end{cases}\left(x;y\in R\right)}\)
4) \(\hept{\begin{cases}3y=\frac{y^2+2}{x^2}\\3x=\frac{x^2+2}{y^2}\end{cases}}\)
5) \(\hept{\begin{cases}x+y-\sqrt{xy}=3\\\sqrt{x+1}+\sqrt{y+1}=4\end{cases}\left(x;y\in R\right)}\)
6) \(\hept{\begin{cases}x^3-8x=y^3+2y\\x^2-3=3\left(y^2+1\right)\end{cases}\left(x;y\in R\right)}\)
7) \(\hept{\begin{cases}\left(x^2+1\right)+y\left(y+x\right)=4y\\\left(x^2+1\right)\left(y+x-2\right)=y\end{cases}\left(x;y\in R\right)}\)
8) \(\hept{\begin{cases}y+xy^2=6x^2\\1+x^2y^2=5x^2\end{cases}}\)
\(\hept{\begin{cases}x^2+y^2=1\\\sqrt[1999]{x}-\sqrt[1999]{y}=\left(\sqrt[2000]{y}-\sqrt[2000]{x}\right)\left(x+y+xy+2001\right)\end{cases}}\)Giả các hệ phương trình
Giải các hệ phương trình:
\(\hept{\begin{cases}2\left(x+y\right)+3\left(x-y\right)=4\\x+y+2\left(x-y\right)=5\end{cases}}\)
b ) \(\hept{\begin{cases}\sqrt{3}-\sqrt{2}y=1\\\sqrt{2}x+\sqrt{3}y=\sqrt{3}\end{cases}}\)