Đặt M = 2^2010 - A
\(2A=2+2^2+...+2^{2010}\)
\(2A-A=\left(2+2^2+...+2^{2010}\right)-\left(1+2+...+2^{2009}\right)\)
\(A=2^{2010}-1\)
\(\Rightarrow M=2^{2010}-2^{2010}+1\)
\(\Rightarrow M=1\)
Vậy,.............
\(M=2^{2010}-2^{2009}-2^{2008}-...-2-1\)
\(\Rightarrow2M=2^{2011}-2^{2010}-2^{2009}-...-2^2-2\)
\(\Rightarrow2M-M=2^{2011}-2^{2010}-1=2^{2010-1}\)
Đặt A=1+2+22+...+22009
2A=2+22+24+...+22010
=> 2A-A=22010-1
=>A=22010-1
=>M=2010-A=1
\(\text{Đặt }M=2^{2010}-A\)
\(2A=2+2^2+...+2^{2010}\)
\(2-A=\left(2+2^2+2^{2010}\right)-\left(1+2+...+2^{2009}\right)\)
\(A=2^{2010}-1\)
\(\Rightarrow\text{ }M=2^{2010}-2^{2010}+1\)
\(\Rightarrow\text{ }M=1\)
\(\text{Vậy : }M=1\)
M = 2^2010 - (2^2009 + 2^2008 + ...+2^1 + 2^0)
Đặt N = 2^2009 + 2^2008 + ...+ 2^1 + 2^0
=> 2N = 2^2010 + 2^2009 + ...+ 2^2 + 2^1
=> 2N-N = 2^2010 - 2^0
N = 2^2010 - 1
Thay N vào M
có: M = 2^2010 - (2^2010 -1) = 2^2010 - 2^2010 + 1 = 1