\(\left(x-5\right)^{2018}-\left(x-5\right)^{2016}=0\)
<=> \(\left(x-5\right)^{2016}\left[\left(x-5\right)^2-1\right]=0\)
<=> \(\orbr{\begin{cases}x-5=0\\\left(x-5\right)^2=1\end{cases}}\)<=>\(\orbr{\begin{cases}x=5\\x-5=\pm1\end{cases}}\)
Vậy x\(\in\){4,5,6}
<=>
\(\left(x-5\right)^{2016}=\left(x-5\right)^{2018}\)
\(\Rightarrow\left(x-5\right)^{2016}\left[1-\left(x-5\right)^2\right]=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-5\right)^{2016}=0\\\left(x-5\right)^2=1-0=1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x-5=0\\x-5=1\\x-5=-1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=5\\x=6\\x=4\end{cases}}\)
\(\left(x-5\right)^{2016}=\left(x-5\right)^{2018}\)
\(\Rightarrow\left(x-5\right)^{2016}-\left(x-5\right)^{2018}=0\)
\(\Rightarrow\left(x-5\right)^{2016}\left[1-\left(x-5\right)^2\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-5\right)^{2016}=0\\1-\left(x-5\right)^2=0\end{cases}}\Rightarrow\orbr{\begin{cases}\left(x-5\right)^{2016}=0\\\left(x-5\right)^2=1\end{cases}}\)
TH 1 : \(\left(x-5\right)^{2016}=0\Rightarrow x-5=0\Rightarrow x=5\)
TH 2 : \(\left(x-5\right)^2=1\Rightarrow\orbr{\begin{cases}x-5=1\\x-5=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=6\\x=4\end{cases}}\)
Vậy \(x\in\left\{5;6;4\right\}\)
_Chúc bạn học tốt_