\(\left(\frac{\sqrt{3}}{\sqrt{2}}+\sqrt{3}\right)-\sqrt{6}=\left(\frac{\sqrt{6}}{\sqrt{2}}+\sqrt{3}\right)-\sqrt{6}=\frac{\sqrt{6}+2\sqrt{3}}{2}-\sqrt{6}=\frac{-\sqrt{6}+2\sqrt{3}}{2}\)
\(\left(\frac{\sqrt{3}}{\sqrt{2}}+\sqrt{3}\right)-\sqrt{6}=\left(\frac{\sqrt{6}}{\sqrt{2}}+\sqrt{3}\right)-\sqrt{6}=\frac{\sqrt{6}+2\sqrt{3}}{2}-\sqrt{6}=\frac{-\sqrt{6}+2\sqrt{3}}{2}\)
1) \(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{\sqrt{2}+1}-\left(\sqrt{2}+3\right)\)
2) \(0.1\sqrt{\left(-3\right)^2}\cdot\left[6\sqrt{\left(-\frac{1}{3}\right)^2}-\sqrt{\left(\sqrt{3}-2\right)^2}\right]^2\)
3) \(\left(\frac{3+2\sqrt{3}}{\sqrt{3}+2}+\frac{2+\sqrt{2}}{\sqrt{2}+1}\right)\div\left(1\div\frac{1}{\sqrt{2}+\sqrt{3}}\right)\)
4) \(\left(\frac{3\sqrt{2}+\sqrt{6}}{\sqrt{12}+2}-\frac{\sqrt{54}}{3}\right)\cdot\frac{2}{\sqrt{6}}\)
5) \(\sqrt{\frac{5+2\sqrt{6}}{5-2\sqrt{6}}}+\sqrt{\frac{5-2\sqrt{6}}{5+2\sqrt{6}}}\)
Rút gọn biểu thức
1) \(\frac{\sqrt{5+2\sqrt{6}}+\sqrt{8+2\sqrt{15}}}{\sqrt{7+2\sqrt{10}}}\)
2) \(\left(2+\frac{3+\sqrt{3}}{\sqrt{3}+1}\right)\left(2+\frac{3-\sqrt{3}}{\sqrt{3}-1}\right):\left(\sqrt{5}-2\right)\)
3) \(\left(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\right).\left(\sqrt{6}+11\right)\)
4) \(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}\)
5) \(\frac{1}{1-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-...-\frac{1}{\sqrt{98}-\sqrt{99}}+\frac{1}{\sqrt{99}-\sqrt{100}}\)
6) \(\frac{1}{2+\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{100\sqrt{99}+99\sqrt{100}}\)
7)\(\left(\sqrt{\frac{2}{3}}+\sqrt{\frac{3}{2}}+2\right)\left(\frac{\sqrt{2}+\sqrt{3}}{4\sqrt{2}}-\frac{\sqrt{3}}{\sqrt{2}+\sqrt{3}}\right)\left(24+8\sqrt{6}\right)\left(\frac{\sqrt{2}}{\sqrt{2}+\sqrt{3}}+\frac{\sqrt{3}}{\sqrt{2}-\sqrt{3}}\right)\)
Bài 1: Rút gọn
a. \(\left(5-2\sqrt{3}\right)^2+\left(5+2\sqrt{3}\right)^2\)
b. \(\left(\sqrt{5}+\sqrt{2}\right)^2-\left(2\sqrt{5}+1\right)\left(2\sqrt{5}-1\right)-\sqrt{40}\)
c. \(\left(\sqrt{2}-1\right)^2-\frac{2}{3}\sqrt{4}+\frac{4\sqrt{2}}{5}+\sqrt{1\frac{11}{15}}-\sqrt{2}\)
d. \(\left(\sqrt{6}-\sqrt{18}+5\sqrt{2}-\frac{1}{2}\sqrt{8}\right)2\sqrt{6}+2\sqrt{3}\)
e. \(\left(2\sqrt{3}-3\sqrt{2}\right)^2+6\sqrt{6}+3\sqrt{24}\)
Bài 2: Rút gọn
A =\(\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}:\frac{\sqrt{x+1}}{x-2\sqrt{x}+1}\right)\)(x>0 ; x khác 1)
\(\left(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{2}{3}}-4\sqrt{\frac{3}{2}}\right)\left(3\sqrt{\frac{2}{3}}-\sqrt{12}-\sqrt{6}\right)=-\sqrt{2}\)
Tính
\(\frac{\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right)\sqrt{5-2\sqrt{6}}}{9\sqrt{3}-11\sqrt{2}}\)
\(\frac{\frac{\sqrt{2+\sqrt{3}}}{2}}{\frac{\sqrt{2+\sqrt{3}}}{2}-\frac{2}{\sqrt{6}}+\frac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}}\)
\(\left(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{2}{3}}-4\sqrt{\frac{3}{2}}\right)\left(3\sqrt{\frac{2}{3}}-\sqrt{12}-\sqrt{6}\right)\)
Tính
1. \(A=\frac{\frac{\sqrt{2+\sqrt{3}}}{2}}{\frac{\sqrt{2+\sqrt{3}}}{2}-\frac{2}{\sqrt{16}}+\frac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}}\)
2. \(B=\frac{2\left(\frac{\sqrt{2}+\sqrt{3}}{6\sqrt{2}}\right)^{-1}+3\left(\frac{\sqrt{2}+\sqrt{3}}{4\sqrt{3}}\right)}{\left(\frac{2+\sqrt{6}}{12}\right)^{-1}+\left(\frac{3+\sqrt{6}}{12}\right)^{-1}}\)
P/s: Đề phức tạp vlin nên ứ làm đc đành phải nhờ mấy pro giúp :)) Tks nhìu nha <3
\(\left(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{2}{3}}-4\sqrt{\frac{3}{2}}\right)\cdot\left(3\sqrt{\frac{2}{3}}-\sqrt{12}-\sqrt{6}\right)\)
Tính:
\(A=\frac{\frac{\sqrt{2+\sqrt{3}}}{2}}{\frac{\sqrt{2+\sqrt{3}}}{2}-\frac{2}{\sqrt{16}}+\frac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}}\)\(B=\frac{2\left(\frac{\sqrt{2}+\sqrt{3}}{6\sqrt{2}}\right)^{-1}+3\left(\frac{\sqrt{2}+\sqrt{3}}{4\sqrt{3}}\right)^{-1}}{\left(\frac{2+\sqrt{16}}{12}\right)^{-1}+\left(\frac{3+\sqrt{6}}{12}\right)^{-1}}\)P/s: Đề phức tạp vlin nên thớt giải k nổi :)) Pro nào giúp em dí ~
Bài 1: Tính
a, \(4\sqrt{8}+\sqrt{18}-6\sqrt{\frac{1}{2}}-\sqrt{200}\)
b, \(\left(\sqrt{27}-2\sqrt{3}+\sqrt{12}\right).\sqrt{3}+\sqrt{75}\)
c,\(\left(\frac{5+2\sqrt{6}}{\sqrt{3}+\sqrt{2}}\right)^2-\left(\frac{5-2\sqrt{6}}{\sqrt{3}-\sqrt{2}}\right)^2\)
d, \(\left(2-\sqrt{2}\right).\left(-5\sqrt{2}\right)-\left(3\sqrt{2}-5\right)^2\)