\(\left(\frac{1}{2}\right)^2+\left(-\frac{3}{4}\right)-\frac{\sqrt{9}}{12}=\frac{1}{4}-\frac{3}{4}-\frac{3}{12}=\frac{-3}{4}\)
\(\left(\frac{1}{2}\right)^2+\left(-\frac{3}{4}\right)-\frac{\sqrt{9}}{12}\)
\(=\frac{1}{4}+\left(-\frac{3}{4}\right)-\frac{3}{12}\)
\(=\left(-\frac{2}{4}\right)-\frac{3}{12}\)
\(=\left(-\frac{6}{12}\right)-\frac{3}{12}\)
\(=\left(-\frac{6}{12}\right)+\left(-\frac{3}{12}\right)=-\frac{9}{12}=-\frac{3}{4}\)
= \(\frac{1}{4}+\left(-\frac{3}{4}\right)-\frac{\sqrt{9}}{12}\)
= \(\frac{1-3}{4}-\frac{\sqrt{9}}{12}\)
=\(\frac{-2}{4}-\frac{\sqrt{9}}{12}\)
=\(\frac{-6}{12}-\frac{3}{12}\)
=\(\frac{-6-3}{12}\)
=\(\frac{-3}{4}\)
\(\left(\frac{1}{2}\right)^2+\left(-\frac{3}{4}\right)-\frac{\sqrt{9}}{12}=\frac{2}{4}-\frac{3}{4}-\frac{1}{4}\)
\(=\frac{2-3-1}{4}=\frac{-2}{4}=\frac{-1}{2}\)
\(\left(\dfrac{1}{2}\right)^2+\left(-\dfrac{3}{4}\right)-\dfrac{\sqrt{9}}{12}\)
\(=\dfrac{1}{4}-\dfrac{3}{4}-\dfrac{3}{12}\)
\(=\dfrac{-3}{4}\)