\(\dfrac{b+1}{b}>=2\)
\(\dfrac{a+1}{a}>=2\)
\(\dfrac{c+1}{c}>=2\)
=>\(\left(\dfrac{a+1}{a}\right)\left(\dfrac{b+1}{b}\right)\left(\dfrac{c+1}{c}\right)>=2\cdot2\cdot2=8\)
\(\dfrac{b+1}{b}>=2\)
\(\dfrac{a+1}{a}>=2\)
\(\dfrac{c+1}{c}>=2\)
=>\(\left(\dfrac{a+1}{a}\right)\left(\dfrac{b+1}{b}\right)\left(\dfrac{c+1}{c}\right)>=2\cdot2\cdot2=8\)
Cho các số thực a,b,c đôi một khác nhau thõa mãn \(0\le a;b;c\le2\).
CMR : \(\dfrac{1}{\left(a-b\right)^2}+\dfrac{1}{\left(b-c\right)^2}+\dfrac{1}{\left(c-a\right)^2}\ge\dfrac{9}{4}\)
Dùng phương pháp phản chứng, chứng minh rằng:
Với 0 < a, b, c < 1. Có ít nhất một trong các bất đẳng thức sau là sai:
\(a\left(1-c\right)>\dfrac{1}{4},b\left(1-a\right)>\dfrac{1}{4},c\left(1-b\right)>\dfrac{1}{4}\)
Cho tập hợp: A=\(\left\{x\in R:-\dfrac{7}{4}< x\le-\dfrac{1}{2}\right\}\), B=\(\left\{x\in R:4< \left|x\right|< \dfrac{9}{2}\right\}\),C=\(\left\{x\in R:-\dfrac{5}{2}x+3< 3x-\dfrac{2}{3}\right\}\)
a. Dùng kí hiệu đoạn, khoảng, nửa khoảng để viết lại các tập hợp trên.
b. Xác định \(\left(A\cap B\right)\)\(\cap C\), \(\left(CrA\right)\)trừ B, \(\left(A\cup C\right)\)\(\cap\)(B trừ A)
M.n giúp em vs ạ, một bài thôi cũng được, rất cần luôn!!!
1.Giải hệ phương trình:
\(\left\{{}\begin{matrix}x^4+3=4y\\x^4+3=4x\end{matrix}\right.\)
2. Viết tính chất đặc trưng cho các phân tử của tập hợp sau:
a) \(A=\left\{\dfrac{1}{2},\dfrac{1}{6},\dfrac{1}{12},\dfrac{1}{20},\dfrac{1}{30}\right\}\)
b) \(B=\left\{\dfrac{2}{3},\dfrac{3}{8},\dfrac{4}{15},\dfrac{5}{24},\dfrac{6}{35}\right\}\)
3. Tìm m để phương trình \(\left|x^2-1\right|=m^4-m^2+1\) có 4 nghiệm phân biệt.
Xác định các tập: \(A\cup B,A\cap B;A\backslash B;B\backslash A\)
a, \(A=\left\{x\in R|-3\le x\le5\right\};B==\left\{x\in R|\left|x\right|< 4\right\}\)
b, \(A=\left[1;5\right];B=\left(-3;2\right)\cup\left(3;7\right)\)
c, \(A=\left\{x\in R|\dfrac{1}{\left|x-1\right|}\ge2\right\};B=\left\{x\in R|\left|x-2\right|\le1\right\}\)
d, \(A=\left[0;2\right]\cup\left(4;6\right);B=(-5;0]\cup\left(3;5\right)\)
Cho A= \(\dfrac{1}{1.102}+\dfrac{1}{2.103}+.....+\dfrac{1}{299.400}\)
Chứng minh rằng: A=\(\dfrac{1}{101}\left[\left(1+\dfrac{1}{2}+...+\dfrac{1}{101}\right)-\left(\dfrac{1}{300}+\dfrac{1}{301}+...+\dfrac{1}{400}\right)\right]\)
Help me please.....
Tính
A=\(\left(\dfrac{1}{2014^{21}}-1\right)\left(\dfrac{1}{2013^2}-1\right)...\left(\dfrac{1}{2^2}-1\right)\)
Cho a,b,c>0. CM các bđt sau:
a)\(\left(a^3+b^3+c^3\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(a+b+c\right)^2\)
b)\(3\left(a^3+b^3+c^3\right)\ge\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
c)\(9\left(a^3+b^3+c^3\right)\ge\left(a+b+c\right)^3\)
Xét tính chẵn lẻ
a, y=\(\left|2x+1\right|+\left|2x-1\right|\)
b, y=2x2 + \(\left|x\right|\)
c,y= \(\dfrac{\left|x+1\right|+\left|x-1\right|}{\left|x+1\right|-\left|x-1\right|}\)
Cảm ơn nha.