Thiếu điều kiện a;b;c dương
Bạn tham khảo ở đây:
Câu hỏi của Nguyễn Thị Bình Yên - Toán lớp 10 | Học trực tuyến
Thiếu điều kiện a;b;c dương
Bạn tham khảo ở đây:
Câu hỏi của Nguyễn Thị Bình Yên - Toán lớp 10 | Học trực tuyến
Cho a,b,c>0. CM các bđt sau:
a)\(\left(a^3+b^3+c^3\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(a+b+c\right)^2\)
b)\(3\left(a^3+b^3+c^3\right)\ge\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
c)\(9\left(a^3+b^3+c^3\right)\ge\left(a+b+c\right)^3\)
CM: (1+a)(1+b)(1+c)\(\ge\left(1+\sqrt[3]{abc}\right)^3\)
Cho a,b,c∈R.CM bđt \(a^2+b^2+c^2\ge ab+bc+ca\) (1). Áp dụng cm các bđt sau:
a)\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)
b)\(\frac{a^2+b^2+c^2}{3}\ge\left(\frac{a+b+c}{3}\right)^2\)
c)\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
d)\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
e)\(\frac{a+b+c}{3}\ge\sqrt{\frac{ab+bc+ca}{3}}vớia,b,c>0\)
f)\(a^4+b^4+c^4\ge abc\) nếu a+b+c=1
\(\left(\dfrac{a+1}{b}\right)\left(\dfrac{b+1}{c}\right)\left(\dfrac{c+1}{a}\right)\ge\)8
Cho a,b,c là độ dài 3 cạnh của 1 tam giác cm:
a)\(ab+bc+ca\le a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)
b)\(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(a+c-b\right)\)
c)\(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4>0\)
d)\(a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a+b\right)^2>a^3+b^3+c^3\)
Cho a,b,c,d∈R.CMR a2+b2≥2ab(1) Áp dụng cm các bđt sau:
a)\(a^4+b^4+c^4+d^4\ge4abcd\)
b)\(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge8abc\)
c) \(\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\left(d^2+4\right)\ge256abcd\)
Giải hpt :
1. \(\left\{{}\begin{matrix}x^2+xy\left(2y-1\right)=2y^3-2y^2-x\\6\sqrt{x-1}+y+7=4x\left(y-1\right)\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}x\sqrt{x^2+y}+y=\sqrt{x^4+x^2}+x\\x+\sqrt{y}+\sqrt{x-1}+\sqrt{y\left(x-1\right)}=\frac{9}{2}\end{matrix}\right.\)
3.
Xác định các tập: \(A\cup B,A\cap B;A\backslash B;B\backslash A\)
a, \(A=\left\{x\in R|-3\le x\le5\right\};B==\left\{x\in R|\left|x\right|< 4\right\}\)
b, \(A=\left[1;5\right];B=\left(-3;2\right)\cup\left(3;7\right)\)
c, \(A=\left\{x\in R|\dfrac{1}{\left|x-1\right|}\ge2\right\};B=\left\{x\in R|\left|x-2\right|\le1\right\}\)
d, \(A=\left[0;2\right]\cup\left(4;6\right);B=(-5;0]\cup\left(3;5\right)\)
\(\sqrt[3]{7x-8}+1\ge\left(\sqrt{2x-1}-1\right)^2\)