1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC
2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB
3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)
4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)
5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O
6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD
Cho điểm M thuộc đường trong (O) , bán kính R, đường trung trực của đoạn OM cắt đường tròn O tại điểm A và B cắt OM tại H
a) Chứng minh H là trung điểm của AB , tam giác AOM đều
b) Vẽ tiếp tuyến tại A,B cắt nhau tại C .CM : O;M;C thẳng hàng .
Tính AC , AH theo R
c) Đường thẳng vuông góc với OA tại O cắt BC tại N . CMinh : MN là tiếp tuyếncủa đường tròn (O) và M là tâm đường tròn nội tiếp tam giác ABC
Cho M thuộc (O; R) đường trung trực của đoạn OM cắt (O) tại A và B, cắt OM tại H
a) Chứng minh: H là trung điểm của AB và tam giác OAM đều
b) Vẽ hai tiếp tuyến tại A và B của (O), chúng cắt nhau tại C. Chứng minh O, M, C thẳng hàng. Tính AC, AH theo R
c) Đường thẳng vuông góc với OA tại O cắt BC tại N. Chứng minh: MN là tiếp tuyến của (O) và M là tâm đường tròn nội tiếp ABC
d) Gọi I là giao điểm của AB và ON. Chứng minh HI.HB + HM.HC = \(R^2\)
Cho điểm M nằm ngoài (O; R). Vẽ tiếp tuyến MA đến đường tròn ( A là tiếp điểm). Vẽ dây AB vuông góc với OM tại H.
a/ Cm: OH.OM = R2
b/ Cm : MB là tiếp tuyến của (O).
c/ Cm 4 điểm A,B,O,M cùng thuộc 1 đường tròn.
d/ MO cắt (O) tại I. Chứng minh I là tâm đường tròn nội tiếp tam giác MAB.
Từ một điểm M nằm ngoài (O;R) với OM > 2R. Vẽ hai tiếp tuyến MA, MB với (O). Gọi I là trung điểm của AM, BI cắt (O) tại C, tia MC cắt (O) tại D.
a) Chứng minh OM vuông góc AB tại H và IA^2 = IB.IC.
b) Chứng minh BD // AM
c) Chứng minh tứ giác AHCI nội tiếp và CA là tia phân giác của góc ICD.
d) AO cắt BD tại K. Chứng minh ba đường thẳng MD, AB và IK đồng quy tại một điểm.
Cho đường tròn (O; R). Điểm M ở bên ngoài đường tròn sao cho OM= 2R. Kẻ hai tiếp tuyến MA, MB tời đường tròn (A;B là các tiếp điểm). Nối OM cắt AB tại H. Hạ HD vuông góc MA tại D. Điểm C thuộc cung nhỏ AB. Tiếp tuyến tại C của đường tròn (O;R) cắt MA, MB lần lượt tại E và F. Đường tròn đường kính BM cắt BD tại I. Gọi K là trung điểm của OA. Chứng minh ba điểm M, I, K thẳng hàng
Cho đường tròn (O) đường kính AB. Lấy điểm C thuộc đường tròn, tiếp tuyến tại A của (O) cắt tia BC tại D. Tiếp tuyến tại C cắt AD ở M. a/ Chứng minh M là trung điểm của AD. b/ Đường thẳng qua O vuông góc với OM cắt CM ở N. Chứng minh BN là tiếp tuyến của (O). c/ Gọi H là hình chiếu của C trên AB, I là trung điểm của CH. Chứng minh A, I, N thẳng hàng.
Cho A nằm trên đường tròn (O) đường kính BC, phân giác của góc BAC cắt BC tại D và cắt đường tròn (O) tại M, AH là đường cao của tam giác ABC.
a) Cm OM vuông góc BC và MB2= MA.MD
b) Phân giác của góc ABC cắt AH tại E; cắt AM tại I; cắt AC tại F và cắt (O) tại N, cm MA = MB = MC.
c) cm EA.FA = EH.FC
d) Qua I kẻ IP vuông góc AB tại P, IP cắt BC tại K, chứng minh N, K, M thẳng hàng.
câu 1 :
Từ một điểm A ở bên ngoài đường tròn (O), vẽ tiếp tuyến AB và cát tuyến ACD với đường tròn (B là tiếp điểm, C nằm giữa A và D). Tia phân giác của góc CBD cắt đường tròn tại M, cắt CD tại E và cắt tia phân giác của góc BAC tại H. CMR:
a, AH ⊥ BE
câu 2 :
Cho (O; R) đường kính AB và điểm C thuộc đường tròn. Gọi M và N là điểm chính giữa các cung nhỏ AC và BC Nối MN cắt AC tại I. Hạ ND vuông góc AC. Gọi E là trung điểm của BC. Dựng hình bình hành ADEF.
a) tính góc MIC
b)DN là tiếp tuyến của (O;R)
c)F thuộc (O)