Lập bảng xét dấu:
\(M=\left(2x-1\right)\left(3+x\right)>0\)
\(N=\left(3-x\right)\left(x+4\right)< 0\)
\(P=\left(4-2x\right)\left(x-1\right)>0\)
tim x để
\(\frac{\left(3x+1\right)\left(1-x\right)}{3-x}\le0\)
Lập bảng xét dấu
Có bao nhiêu cặp số nguyên dương \(\left(x,y\right)\) mà \(x< y\) và \(\frac{x^2+y^2}{x+y}\inƯ\left(2835\right)\).
Giải phương trình :
\(\left|x-2\right|+\left|x-3\right|+\left|2x-8\right|=9\)
Giải bằng cách lập bảng nhận xét.
\(A=1.2+2.3+...+n\left(n+1\right)\)
\(\Rightarrow3A=1.2.3+2.3.3+...+n\left(n+1\right)3\)
\(=1.2.3+2.3.\left(4-1\right)+...+n\left(n+1\right)\left[\left(n+2\right)-\left(n-1\right)\right]\)
\(=1.2.3+2.3.4-1.2.3+...+n\left(n+1\right)\left(n+2\right)-\left(n-1\right)n\left(n+1\right)\)
\(=n\left(n+1\right)\left(n+2\right)\)
\(\Rightarrow A=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
Lập công thức tổng quát để tính:
\(S=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2k+1}\left(k\in N\right)\)
Với mọi số tự nhiên n > 2 . Chứng minh rằng \(\frac{1}{\left(n-1\right).n.\left(n+1\right)}=\frac{1}{2}\left[\frac{1}{\left(n-1\right).n}-\frac{1}{n.\left(n+1\right)}\right]\)
lập các tỉ lệ thức có thể lập từ các tỉ lệ thức sau: \(6:\left(-27\right)=\left(-6\frac{1}{2}\right):29\frac{1}{4}\)
\(\left(\frac{2}{2.3}-1\right)\left(\frac{2}{3.4}-1\right)\left(\frac{2}{4.5}\right)........\left(\frac{2}{n\left(n+1\right)}-1\right)\left(n\in N\ne0,n\ge2\right)\)