Bài 1 làm tính chia :
a,[5.(x-y)^4-3.(x-y)^3+4.(x-y)^2]:(y-x)^2
b,[(x+y)^5-2.(x+y)^4+3.(x+y)^3]:(3x-1)=0
Bài 2 tìm x biết :
(x^2-1/2x):2x-(3x-1)^2.(3x-1)=0
làm tính chia (3x^4+x^3+6x-5):(x^2+1)
làm phép tính chia
n, ( 2 + x + 8x mũ 3 - 2x mũ 2 ) : ( 2x + 1 )
r, ( 8x - 5 - 3x mũ 3 - 3x mũ 2 + x mũ 4 ) : ( x - 1 )
a, ( x mũ 3 + 2 + x ) : ( x + 1 )
b, ( x mũ 4 + 3x + 1 + 3x mũ 3 ) : ( x mũ 2 + 1 )
Làm tính chia:
[3(x – y)4 + 2(x – y)3 – 5(x – y)2] : (y – x)2
Bài 1: Làm phép chia
( - 2 x^5 y)^8 : ( - 2 x^5 y)^6
Bài 2: Làm tính chia
[ (2x-y)^7 - 6.(2x-y)^5 - (y-2x)^4 + (y-2x)^3 ] :(2x-y)^3
Bài 1: Làm phép chia
( - 2 x^5 y)^8 : ( - 2 x^5 y)^6
Bài 2: Làm tính chia
[ (2x-y)^7 - 6.(2x-y)^5 - (y-2x)^4 + (y-2x)^3 ] :(2x-y)^3
bài 1:tính
a)2x2+3(x-1)(x+1)-5x(x+1)
b)4(x-1)(x+5)-(x-2)(x+5)-3(x-1)(x+2)
bài 2:tìm x
a)(8-5x)(x+2)+4(x-2)(x+1)+2(x-2)(x+2)=0
b)(x+3)(x+2)-(x-2)(x+5)=0
bài 3:chứng minh rằng mọi số nguyên n thì :
a)A=(n2+3n-1)(n+2)-n3+2 chia hết cho 5
b) B=(6n+1)(n+5)-(3n+5)(2n-1) chia hết cho 2
làm phép chia :
a) (x^4 -2x^3 + 2x -1) : (x^2 - 1)
b) (x^3 -8) : (x^2 + 2x +4)
c) (x^6 - 2x^5 + 2x^4 + 6x^3 - 4x^2)n: 6x^2
d) (-2x^5 + 3x^2 - 4x^3) :2x^2
e) (15x^3 - 10x^2 + x - 2) : (x - 2)
f) (2x^4 - 3x^3 - 3x^2 + 6x - 2) : (x^2 - 2)
làm tính chia
a, (2x^4 + x^3 - 3x^2 + 5x -2) : (x^2 - x +1)
b, ( 6x^2 + 13x - 5) : ( 2x +5)
c, (2x^4 + x^3 - 5x^2 - 3x - 3) : (x^2 - 3)
1, Tính (x - 2)(x - 5) bằng:
A. \(x^2\) + 10. B. \(x^2\) + 7x + 10. C. \(x^2\)- 7x + 10. D. \(x^2\)- 3x + 10.
2, Kết quả của phép chia (2\(x^3\)- 5\(x^2\) + 6x – 15) : (2x – 5) là:
A. x + 3. B. x – 3. C. \(x^2\) – 3. D. \(x^2\) + 3 .