Các bạn cho mình cả cách giải nha!
Thanks các bạn nhìu!!!!!
Bài 1: Giải phương trình sau
a, \(\sqrt[3]{x+1}+\sqrt[3]{7-x}=2\)
b, \(\sqrt[3]{x+3}-\sqrt[3]{6-x}=1\)
Bài 2: Tính giá trị của các biểu thức sau
A=\(\sqrt[3]{6\sqrt{3}+10}-\sqrt[3]{6\sqrt{3}-10}\)
B= \(\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}\)
C= \(\sqrt[3]{45+29\sqrt{2}}+\sqrt[3]{45-29\sqrt{2}}\)
D= \(\sqrt[3]{2+10\sqrt{\frac{1}{27}}}+\sqrt[3]{2-10\sqrt{\frac{1}{27}}}\)
Bài 5:So sánh (không dùng bảng số hay máy tính bỏ túi)
a. 2 và √2+ 1 b. 1 và √3–1 c. 2√31và 10 d. -3.√11và -12
Bài 6 : So sánh
:a/ 15 và √200
b/ 27 và 9 √5
c/ -24 và -6 √15
Tính giá trị biểu thức: A=\(x^2+2002x-2003\) với x=\(\frac{\left(27+10\sqrt{2}\right)\sqrt{27-10\sqrt{2}}-\left(27-10\sqrt{2}\right)\sqrt{27+10\sqrt{2}}}{\left(\sqrt{\sqrt{13}-3}+\sqrt{\sqrt{13}+3}\right):\sqrt{\sqrt{13}+2}}\)
Tính nhanh:
A=1+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20=
B=20+21+22+23+24+25=
C=26+27+28+29+30+31+32+33=
D=1+(tổng các số đến 100)=
Giả sử cho biểu thức :
\(T\left(x\right)=\left(1+x^2\right)^{15}=a_0+a_1x+a_2x^2+a_3x^3+.....+a_{29}x^{29}+a_{30}x^{30}.\)
Tính giá trị của biểu thức:
\(H=-2a_1+2^2a_2-2^3a_3+2^4a_4-2^5a_5+...+2^{28}a_{28}-2^{29}a_{29}+2^{30}a_{30}\)
Tính giá trị biểu thức
A = \(\sqrt[3]{6\sqrt{3}+10}\)TRỪ \(\sqrt[3]{6\sqrt{3}-10}\)
B= \(\sqrt[3]{45+29\sqrt{2}}\) + \(\sqrt[3]{45-29\sqrt{2}}\)
C=\(\sqrt[3]{2+10\sqrt{\frac{1}{27}}}\)+ \(\sqrt[3]{2-10\sqrt{\frac{1}{27}}}\)
Bài 28 Cho a,b,c là độ dài ba cạnh của một tam giác. Tính giá trị biểu thức :
P=\(\frac{\left[a^2-\left(b+c\right)^2\right]\left(a+b-c\right)}{\left(a+b+c\right)\left[\left(a-c\right)^2-b^2\right]}\)
Bai 29 Cho biểu thức P=(b2+c2-a2)2-4b2c2
Chứng minh rằng nếu a,b,c là ba cạnh của một tam giác thì P<0
Bài 30Cho các số dương x,y,z thỏa mãn
\(\hept{\begin{cases}xy+y+z=3\\yz+y+z=8\\zx+x+z=15\end{cases}}\)
Tính giá trị biểu thức: P=x+y+z
Bài 28 Cho a,b,c là độ dài ba cạnh của một tam giác. Tính giá trị biểu thức :
P=\(\frac{\left[a^2-\left(b+c\right)^2\right]\left(a+b-c\right)}{\left(a+b+c\right)\left[\left(a-c\right)^2-b^2\right]}\)
Bai 29 Cho biểu thức P=(b2+c2-a2)2-4b2c2
Chứng minh rằng nếu a,b,c là ba cạnh của một tam giác thì P<0
Bài 30Cho các số dương x,y,z thỏa mãn
\(\hept{\begin{cases}xy+y+z=3\\yz+y+z=8\\zx+x+z=15\end{cases}}\)
Tính giá trị biểu thức: P=x+y+z
Bài 28 Cho a,b,c là độ dài ba cạnh của một tam giác. Tính giá trị biểu thức :
P=\(\frac{\left[a^2-\left(b+c\right)^2\right]\left(a+b-c\right)}{\left(a+b+c\right)\left[\left(a-c\right)^2-b^2\right]}\)
Bai 29 Cho biểu thức P=(b2+c2-a2)2-4b2c2
Chứng minh rằng nếu a,b,c là ba cạnh của một tam giác thì P<0
Bài 30Cho các số dương x,y,z thỏa mãn
\(\hept{\begin{cases}xy+y+z=3\\yz+y+z=8\\zx+x+z=15\end{cases}}\)Tính giá trị biểu thức: P=x+y+z