Cho mặt cầu (S) có bán kính 3 . Trong tất cả các khối trụ nội tiếp mặt cầu (S) (hai đáy của khối trụ là những thiết diện của hình cầu cắt bởi hai mặt phẳng song song), khối trụ có thể tích lớn nhất bằng bao nhiêu ?
Lăng trụ tam giác đều nội tiếp trong mặt cầu bán kính R=1 có thể tích lớn nhất bằng bao nhiêu?
Cho hình cầu (S) tâm I, bán kính R không đổi. Một hình trụ có chiều cao h và bán kính r thay đổi nội tiếp hình cầu. Tính chiều cao h theo R sao cho diện tích xung quanh của hình trụ lớn nhất.
Cho mặt cầu (S ) có bán kính 3 . Trong tất cả các khối trụ nội tiếp mặt cầu (S ) (hai đáy của khối trụ là những thiết diện của hình cầu cắt bởi hai mặt phẳng song song), khối trụ có thể tích lớn nhất là bao nhiêu?
Hình nón tròn xoay nội tiếp trong mặt cầu bán kính R = 3 4 có thể tích lớn nhất bằng bao nhiêu V m a x
Cho hai mặt phẳng (P) và (Q) song song với nhau cắt khối cầu tâm O bán kính R tạo thành hai hình tròn (C1) và (C2) cùng bán kính. Xét hình nón có đỉnh trùng với tâm của một trong hai hình tròn, đáy trùng với hình tròn còn lại. Biết diện tích xung quanh của hình nón là lớn nhất, khi đó thể tích khối trụ có hai đáy là hai hình tròn (C1) và (C2) bằng:
A. 4 π R 3 3 9
B. 2 π R 3 3 9
C. π R 3 3 9
D. 4 π R 3 3 3
Khi cắt mặt cầu S(O;R) bởi một mặt kính, ta được hai nửa mặt cầu và hình tròn lớn của mặt kính đó gọi là mặt đáy của mỗi nửa mặt cầu. Một hình trụ gọi là nội tiếp nửa mặt cầu S(O;R) nếu một đáy của hình trụ nằm trong đáy của nửa mặt cầu, còn đường tròn đáy kia là giao tuyến của hình trụ với nửa mặt cầu. Biết R=1,tính bán kính đáy r và chiều cao h của hình trụ nội tiếp nửa mặt cầu S(O;R) để khối trụ có thể tích lớn nhất.
Khi cắt mặt cầu S(O;R) bởi một mặt kính, ta được hai nửa mặt cầu và hình tròn lớn của mặt kính đó gọi là mặt đáy của mỗi nửa mặt cầu. Một hình trụ gọi là nội tiếp nửa mặt cầu S(O;R) nếu một đáy của hình trụ nằm trong đáy của nửa mặt cầu, còn đường tròn đáy kia là giao tuyến của hình trụ với nửa mặt cầu. Biết R=1,tính bán kính đáy r và chiều cao h của hình trụ nội tiếp nửa mặt cầu S(O;R) để khối trụ có thể tích lớn nhất.
Cho hình nón bán kính r=12 nội tiếp hình cầu bán kính r=13 (như hình vẽ). Tính diện tích xung quanh S x q của hình nón.