\(F=x^2-4x+y^2-8y+6\)
\(=\left(x^2-4x+4\right)+\left(y^2-8y+16\right)-14\)
\(=\left(x-2\right)^2+\left(y-4\right)^2-14\)
Nhận xét :
\(\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\\\left(y-4\right)^2\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\)
\(\Leftrightarrow F\ge-14\)
Dấu "=" xảy ra khi \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)
Vậy..
Ta có:
x2 - 4x + y2 - 8y + 6
= (x2 - 2.2x + 22) + (y2 - 2.4y + 42) - 14
= (x - 2)2 + (y - 4)2 - 14 > = -14
Vậy FMin = -14 <=> (x;y) = (2;4)