C = x2 +x +1
C=x2+2.\(\dfrac{1}{2}\) x+\(\dfrac{1}{4}\) +\(\dfrac{3}{4}\)
C=(x2+\(2.\dfrac{1}{2}x+\dfrac{1}{4}\) )+\(\dfrac{3}{4}\)
C=\(\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Do \(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\)
=>\(\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
=>C≥\(\dfrac{3}{4}\)
Min C =\(\dfrac{3}{4}\) khi
x+\(\dfrac{1}{2}=0\)
=>x=\(-\dfrac{1}{2}\)