Đặt \(\frac{x}{2013}=\frac{y}{2014}=\frac{z}{2015}=k\)
=> x=2013k, y=2014k, z= 2015k
lúc đó T=\(\frac{\left(x-z\right)^3}{\left(x-y\right)^2.\left(y-z\right)}=\frac{\left(2013k-2015k\right)^3}{\left(2013k-2014k\right)^2.\left(2014k-2015k\right)}\)
=\(\frac{\left(-2k\right)^3}{\left(-1k\right)^2.\left(-1k\right)}=\frac{-8k^3}{k^2.\left(-k\right)}=\frac{-8k^3}{-k^3}=8\)