Vì ΔMBC cân tại M
mà MD là trung tuyến
nên MD vuông góc với BC
Vì ΔMBC cân tại M
mà MD là trung tuyến
nên MD vuông góc với BC
Cho tam giác abc vuông tại a ( AB<AC) M là trung điểm của AB. Trên tia đối của tia MC lấy điểm D sao cho : MD=MC . C/m : a) tam giác AMD = tam giác BMC b)BD vuông góc với AB c) Gọi N là trung điểm của BC , trên tia đối của tia NA lấy điểm E sao cho NE = NA chứng minh D,B,E thẳng hàng
Cho tam giác ABC Gọi M là trung điểm của AC Trên tia đối MB lấy điểm D sao cho MD = MB a chứng minh tam giác ABM bằng tam giác CD m b Chứng minh AB = CD c Gọi N là trung điểm của BC kéo dài BC cắt AC tại E Chứng minh C là trung điểm của De D trên tia đối tia CA lấy F sao cho CF = cm Gọi O là trung điểm của m chứng minh b o F thẳng hàng
Bài 4. Cho tam giác ABC vuông tại A. Gọi M là trung điểm của AC. Trên tia đối của tia MB lấy điểm MD = MB Chứng minh rằng: a) AB = CD và AC vuông góc với CD b) AD = BC và AD //BC c)góc ABM > góc ACM
Cho tam giác ABC , gọi M là trung điểm của AC . Trên tia đối MB lấy điểm D sao cho MD=MB a , tam giác ABM = tam giác CDM b , AB song song với CD c , Gọi N là trung điểm của BC . Kéo dài DC cắt AN tại E . Chứng minh C là trung điểm của DE d , Trên tia đối cảu CA lấy F cho CF= CM . Gọi O là trung điểm của EM . Chúng minh B,O,F thẳng hàng
Cho tam giác ABC cân tại A có AM là đường trung tuyến
a) chứng minh tam giác AMB bằng tam giác AMC
b)trên tia đối của MA lấy điểm D sao cho MA=MD chứng mình BC là tia phân giác của góc ABD
c)lấy điểm E trên đoạn MC sao cho EC =2EM gọi I là trung điểm của DC chứng mình 2EI < AB+CE
cho tam giác abc vuông tại A; M là trung điểm của AC trên tia đối của tia MB lấy điểm D sao cho MD=MB
a).Chứng minh tam giác ABM =tam giác CDM.
b)So sánh AC<BC và AC<BD
cho tam giác ABC có AB=AC
Gọi I là trung điểm của cạnh BC. a) Chứng minh tam giác ABI=ACI. b) Gọi M là trung điểm của cạnh AC.Trên tia đối của tia MB lấy điểm E sao cho EM=MB.Chứng minh EA vuông góc với AI.Bài 4 (4,0 điểm): Cho tam giác ABC cân tại A. (AC > BC). Gọi M là trung điểm của BC.
a) Chứng minh: tam giác ABM = tam giác AMC và AM vuông góc với BC.
b) Gọi I là trung điểm của AC. Trên tia đối của tia IM lấy điểm D sao cho ID = IM. Chứng minh: AD = CM.
c) BD cắt AC, AM lần lượt tại G và E. Chứng minh: rAED = rMEB
và BC < 3AG
Cho tam giác ABC có AB = AC. M là trung điểm của BC. Chứng minh:
a. Tam giác ABM = tam giác ACM, AM vuông góc với BC
b. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Chứng minh: AB//CD
c. Cho ME vuông góc với AB (E thuộc AB), MF vuông góc CD (F thuộc CD). Chứng minh: M là trung điểm của EF.
Cho tam giác ABC có góc B=60°, AB=2cm, BC= 5cm. Trên cạnh BC lấy điểm D sao cho BA=BD.
a) Chứng minh tam giác ABD đều
b) Gọi H là trung điểm của BD. Chứng minh AH vuông góc với BD
c) Tính đọ dài cạnh AC
d)Tam giác ABC có là tam giác vuông không? Tại sao?