Chương II : Tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
lilith.

Cho tam giác ABC có AB = AC. M là trung điểm của BC. Chứng minh:

a. Tam giác ABM = tam giác ACM, AM vuông góc với BC

b. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Chứng minh: AB//CD

c. Cho ME vuông góc với AB (E thuộc AB), MF vuông góc CD (F thuộc CD). Chứng minh: M là trung điểm của EF. loading...

Nguyễn Lê Phước Thịnh
15 tháng 12 2023 lúc 19:47

a: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

=>\(\widehat{AMB}=\widehat{AMC}\)

mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)

nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)

b: Xét ΔMBA vuông tại M và ΔMCD vuông tại M có

MB=MC

MA=MD

Do đó: ΔMBA=ΔMCD

=>\(\widehat{MBA}=\widehat{MCD}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CD

c: Xét ΔBEM vuông tại E và ΔCFM vuông tại F có

MB=MC

\(\widehat{MBE}=\widehat{MCF}\)

Do đó: ΔBEM=ΔCFM

=>ME=MF 

ΔBEM=ΔCFM

=>\(\widehat{BME}=\widehat{CMF}\)

mà \(\widehat{BME}+\widehat{EMC}=180^0\)(hai góc kề bù)

nên \(\widehat{CMF}+\widehat{EMC}=180^0\)

=>F,M,E thẳng hàng

mà MF=ME

nên M là trung điểm của EF


Các câu hỏi tương tự
Hoàng Giang
Xem chi tiết
lilith.
Xem chi tiết
Bacon_Dat
Xem chi tiết
lilith.
Xem chi tiết
Huỳnh Kim Uyên
Xem chi tiết
Phạm Nguyên Thảo My
Xem chi tiết
Tống Thị Hồng Nhung
Xem chi tiết
Nguyễn Quý Phạm Duy
Xem chi tiết
Liinh Ngyeen
Xem chi tiết