a: Xét tứ giác ABCD có
M là trung điểm chung của AC và BD
=>ABCD là hình bình hành
=>AB=CD và AB//CD
=>AC vuông góc CD
b: ABCD là hình bình hành
=>AD//BC và AD=BC
a: Xét tứ giác ABCD có
M là trung điểm chung của AC và BD
=>ABCD là hình bình hành
=>AB=CD và AB//CD
=>AC vuông góc CD
b: ABCD là hình bình hành
=>AD//BC và AD=BC
Cho △ ABC vuông góc tại A, gọi M là trung điểm của AC, trên tia đối của tia MB lấy điểm D sao cho MB = MD
a) chứng minh AD = BC
b) chứng minh CD vuông góc với AC
c) đường thẳng qua B song song với AC cắt tia DC tại N. chứng minh △ABM = △CNM
GIÚP MIK VS Ạ
Cho tam giác ABC Gọi M là trung điểm của AC Trên tia đối MB lấy điểm D sao cho MD = MB a chứng minh tam giác ABM bằng tam giác CD m b Chứng minh AB = CD c Gọi N là trung điểm của BC kéo dài BC cắt AC tại E Chứng minh C là trung điểm của De D trên tia đối tia CA lấy F sao cho CF = cm Gọi O là trung điểm của m chứng minh b o F thẳng hàng
Cho tam giác ABC a) Cho biết góc A= 80 độ, góc B= 60 độ. So sánh các cạnh của tam giác ABC b) Gọi M là trung điểm của cạnh BC. Trên tia đối của tia MA lấy điểm D sao cho MA=MD. Chứng minh rằng: AB=CD và AB + AC > AD c) Gọi N là trung điểm của đoạn thẳng CD và K là giao điểm của AN và BC. Chứng minh rằng: BC = 3CK
Cho tam giác ABC có M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD a) Chứng minh rằng A AMD= ACMB b) Chứng minh rằng AB // CD c) Vẽ tia CN 1 AD (N e AD) và API BC (Pe BC). Chứng minh rằng ND = BP d) Chứng minh rằng N, M, P thẳng hàng
Bài 5. Cho tam giác ABC vuông tại A( AB > AC). Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD= MA
a) Cho AB= 8cm, BC= 10cm. Tính AC?
b) Chứng minh DAMB = D DMC, từ đó suy ra CD ^ AC
c) Vẽ AH vuông góc với BC tại H, trên tia đối của HA lấy E sao cho HE = HA. Chứng minh: DACE cân
d)Chứng minh BD = CE.
Bài 12: Cho tam giác ABC có AB < AC. Trên tia đối của tia CA lấy điểm D sao cho CD = AB. Gọi H, K lần lượt là trung điểm của AD, BC. Trung trực AD, BC cắt nhau tại I. Vẽ IE vuông góc với AB tại E.
a) Chứng minh : IB = IC; IA = ID.
b) Chứng minh: và AI là phân giác của góc BAC.
c) Chứng minh: BE = HC và AI là đường trung trực của đoạn thẳng EH.
d) Từ C kẻ đường thẳng song song với AB, cắt đường thẳng EH tại F. Chứng minh: và E, K, F thẳng hàng.
Cho tam giác ABC cân tại A, AM là phân giác góc A (M thuộc BC)
a/ chứng minh MB = MC
b/ Gọi I là trung điểm AC. Trên tia đối của tia đối của tia IB, lấy D sao cho BI = ID. Chứng minh AB // CD
c/ Gọi K là giao điểm của AM và CD. Chứng minh KC + IB + CD > AM + IA
Bài 4 (4,0 điểm): Cho tam giác ABC cân tại A. (AC > BC). Gọi M là trung điểm của BC.
a) Chứng minh: tam giác ABM = tam giác AMC và AM vuông góc với BC.
b) Gọi I là trung điểm của AC. Trên tia đối của tia IM lấy điểm D sao cho ID = IM. Chứng minh: AD = CM.
c) BD cắt AC, AM lần lượt tại G và E. Chứng minh: rAED = rMEB
và BC < 3AG
Cho tam giác ABC , gọi M là trung điểm của AC . Trên tia đối MB lấy điểm D sao cho MD=MB a , tam giác ABM = tam giác CDM b , AB song song với CD c , Gọi N là trung điểm của BC . Kéo dài DC cắt AN tại E . Chứng minh C là trung điểm của DE d , Trên tia đối cảu CA lấy F cho CF= CM . Gọi O là trung điểm của EM . Chúng minh B,O,F thẳng hàng