Chương II : Tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ngan Vo Kim

cho tam giác abc vuông tại A; M là trung điểm của AC trên tia đối của tia MB lấy điểm D sao cho MD=MB
a).Chứng minh tam giác ABM =tam giác CDM.
b)So sánh AC<BC và AC<BD

-.-Nha Đầu Ngốc -.-
29 tháng 3 2021 lúc 17:46

xét ΔABM và ΔCDM :

         AM = CM ( M là t/đ của AC )

       góc AMB = góc CMD ( đối đỉnh )

      MB = MD ( gt)

do đó : ΔABM = ΔCDM ( c.g.c )

Nguyễn Lê Phước Thịnh
29 tháng 3 2021 lúc 19:43

b) Ta có: ΔABM=ΔCDM(cmt)

nên \(\widehat{MAB}=\widehat{MCD}\)(hai góc tương ứng)

mà \(\widehat{MAB}=90^0\)(gt)

nên \(\widehat{MCD}=90^0\)

Ta có: \(\widehat{MCD}+\widehat{MCB}=\widehat{DCB}\)(Tia CM nằm giữa hai tia CD,CB)

nên \(\widehat{DCB}>\widehat{MCD}\)

hay \(\widehat{DCB}>90^0\)

Xét ΔDCB có \(\widehat{DCB}>90^0\)(cmt)

mà cạnh đối diện với \(\widehat{DCB}\) là cạnh DB

nên DB là cạnh lớn nhất trong ΔDCB(Định lí)

hay DB>BC

mà BC>AC(ΔABC vuông tại A có BC là cạnh huyền nên BC là cạnh lớn nhất)

nên AC<BD(Đpcm)


Các câu hỏi tương tự
Mai Chi
Xem chi tiết
Băng Tâm
Xem chi tiết
Tống Thị Hồng Nhung
Xem chi tiết
Mai Chi
Xem chi tiết
Nguyễn Thùy Trâm
Xem chi tiết
Thơ Thiên
Xem chi tiết
Trung Hiếu Hoàng Vũ
Xem chi tiết
lilith.
Xem chi tiết
Minh An Hồ Thị
Xem chi tiết