xét ΔABM và ΔCDM :
AM = CM ( M là t/đ của AC )
góc AMB = góc CMD ( đối đỉnh )
MB = MD ( gt)
do đó : ΔABM = ΔCDM ( c.g.c )
b) Ta có: ΔABM=ΔCDM(cmt)
nên \(\widehat{MAB}=\widehat{MCD}\)(hai góc tương ứng)
mà \(\widehat{MAB}=90^0\)(gt)
nên \(\widehat{MCD}=90^0\)
Ta có: \(\widehat{MCD}+\widehat{MCB}=\widehat{DCB}\)(Tia CM nằm giữa hai tia CD,CB)
nên \(\widehat{DCB}>\widehat{MCD}\)
hay \(\widehat{DCB}>90^0\)
Xét ΔDCB có \(\widehat{DCB}>90^0\)(cmt)
mà cạnh đối diện với \(\widehat{DCB}\) là cạnh DB
nên DB là cạnh lớn nhất trong ΔDCB(Định lí)
hay DB>BC
mà BC>AC(ΔABC vuông tại A có BC là cạnh huyền nên BC là cạnh lớn nhất)
nên AC<BD(Đpcm)