1. a,b>0, a+b<=1. tìm min P= 1/(a^3+b^3)+1/a^2b+ab^2 ( Dùng BĐT cộng mẫu cho 3 số)
2. a,b,c>0, a^2+b^2+c^2>=1. tìm min P= a+b+c+1/abc
3. x,y,z>0, 1/x+1/y+1/z=4. tìm min P= 1/(2x+y+z)+1/(x+2y+z)+1/(x+y+2z)
a. a,b,c>0, a+b=<1, tìm min P=1/(a^3+b^3)+1/(a^2.b+a.b^2)
b. a,b,c>0,a^2+b^2+c^2=1, tìm minP=a+b+c+1/abc
c. x,y,z>0,1/x+1/y+1/z=4, tìm min P=1/(2x+y+z)+1/(2y+x+z)+1/(2z+x+y)
Tìm min,max của P=xyz biết A= \(\frac{8-x^2}{16+x^4}+\frac{8-y^2}{16+y^4}+\frac{8-z^2}{16+z^4}\ge0.\)
Cho a;b;c >0 thỏa mã \(a+b+c\le3\)Tìm min P \(=\left(3+\frac{1}{a}+\frac{1}{b}\right)\left(3+\frac{1}{b}+\frac{1}{c}\right)\left(3+\frac{1}{c}+\frac{1}{a}\right)\)
Bài 1: Tìm min và max của \(A=x\left(x^2-6\right)\) biết \(0\le x\le3\)
Baì 2: Tìm max của \(A=\left(3-x\right)\left(4-y\right)\left(2x+3y\right)\) biết \(0\le x\le3\) và \(0\le y\le4\)
Bài 3: Cho a, b, c>0 và a+b+c=1. Tìm min của \(A=\frac{\left(1+a\right)\left(1+b\right)\left(1+c\right)}{\left(1-a\right)\left(1-b\right)\left(1-c\right)}\)
Bài 4: Cho 0<x<2. Tìm min của \(A=\frac{9x}{2-x}+\frac{2}{x}\)
1. cho a, b, c > 0 và a + b + c =< căn3
Tìm min D biết D = căn(a2 + 1/b2) + căn(b2 + 1/c2) + căn(c2 + 1/a2)
2. Cho a, b, c > 0 và abc = 1
Chứng minh a3/[(1+b)(1+c)] + b3/[(1+c)(1+a)] + c3/[(1+a)(1+b)]
3. Cho a, b, c là 3 cạnh của tam giác. Chứng minh ab + bc + ca =< (c + a - b)4/[a(a + b - c)] + (a + b - c)4/[b(b + c - a)] + (b + c - a)4/[c(a + c - b)]
4. Cho x, y, z > 0
chứng minh (xyz)/[(1+3x)(x+8y)(y+9z)(z+6)] =< 1/74
1. Cho A=\(\frac{3}{2+\sqrt{2x-x^2}+3}\)
a. Tìm x để A có nghĩa
b. Tìm Min(A), Max(A)
2/ Tìm Min, Max của: \(A=\frac{1}{2+\sqrt{x-x^2}}\)
3/ Tìm Min(B) biết: \(B=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
4/ Tìm Min, Max của:\(C=\frac{4x+3}{x^2+1}\)
5/ Tìm Max của: \(A=\sqrt{x-1}+\sqrt{y-2}\)biết \(x+y=4\)
6/ Tìm Max(B) biết: \(B=\frac{y\sqrt{x-1}+x\sqrt{y-2}}{xy}\)
7/ Tìm Max(C) biết: \(C=x+\sqrt{2-x}\)
1. Cho a, b là các hằng số dương. Tìm min A=x+y biết x>0, y>0; \(\frac{a}{x}+\frac{b}{y}=1\)
2.Tìm \(a\in Z\), a#0 sao cho max và min của \(A=\frac{12x\left(x-a\right)}{x^2+36}\)cũng là số nguyên
3. Cho \(A=\frac{x^2+px+q}{x^2+1}\) . Tìm p, q để max A=9 và min A=-1
4. Tìm min \(P=\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+xz}\) với x,y,z>0 ; \(x^2+y^2+z^2\le3\)
5. Tìm min \(P=3x+2y+\frac{6}{x}+\frac{8}{y}\) với \(x+y\ge6\)
6. Tìm min, max \(P=x\sqrt{5-x}+\left(3-x\right)\sqrt{2+x}\) với \(0\le x\le3\)
7.Tìm min \(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\) với x>0, y>0; x+y=1
8.Tìm min, max \(P=x\left(x^2+y\right)+y\left(y^2+x\right)\) với x+y=2003
9. Tìm min, max P = x--y+2004 biết \(\frac{x^2}{9}+\frac{y^2}{16}=36\)
10. Tìm mã A=|x-y| biết \(x^2+4y^2=1\)
1. Cho \(\left\{{}\begin{matrix}x,y,z>0\\x+y+z=\dfrac{3}{4}\end{matrix}\right.\)
Tìm min \(C=\sqrt[3]{x+3y}+\sqrt[3]{y+3z}+\sqrt[3]{z+3x}\)
2. Với a,b,c là đô dài 3 cạnh 1 tam giác
Chứng minh: \(\sqrt[3]{a+b-c}+\sqrt[3]{b+c-a}+\sqrt[3]{c+a-b}\le\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\)
Chào các bạn ! hôm nay mik có 1 cái đề khó ơi là khó thế này,những bạn nào giỏi toán vào phụ giúp mik một tay nhé!
1,Cho a+b>2 chứng minh rằng a^4+b^4>a^3+b^3
2,cho C=căn 2008+ căn 2009+căn 2010
D= căn 2005 + căn 2007+ căn 2015
So sánh C D
3,cho x>0 y>0 x+y=4 Tìm min E=(x+(1/x))^2 + (y+(1/y))^2 +2018
4,cho a>1,b>1 tìm min Q
Q= (a^2)/(b-1) +(b^2)/(a-1)
5,tìm số nguyên n sao cho n+1 và 4n+29 đều là số chính phương
6,
CẢM ƠN CÁC BẠN